Phonon Spectra and Electron-Phonon Interaction in a Combined Cylindrical Semiconductor Nanotube

Authors

  • O.M. Makhanets Yu. Fedkovych Chernivitsi National University
  • N.R. Tsiupak Yu. Fedkovych Chernivitsi National University
  • V.I. Gutsul Yu. Fedkovych Chernivitsi National University

DOI:

https://doi.org/10.15407/ujpe57.10.1060

Keywords:

-

Abstract

A theory of electron-phonon interaction in a combined cylindrical semiconductor nanotube has been developed in the framework of the effective mass model for electrons and a dielectric continuum for phonons. Analytical expressions for Hamiltonians of electron interaction with confined and interface phonons have been derived in the secondary quantization representation for electron and phonon variables. Dependences of the phonon energies and the interface phonon polarization field potential on the axial quasimomentum and the geometrical parameters of a combined nanotube fabricated on the basis of GaAs and Al0.4Ga0.6As semiconductors have been studied.

References

K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, and F. Willaime, Science 278, 653 (1997).

https://doi.org/10.1126/science.278.5338.653

Y. Zhang, K. Suenaga, C. Colliex, and S. Iijima, Science 281, 973 (1998).

https://doi.org/10.1126/science.281.5379.973

A.I. Persson, M.W. Larsson, S. Stenstro, B.J. Ohlsson, L. Samuelson, and L.R. Wallenberg, Nature Mater. 3, 677 (2004).

https://doi.org/10.1038/nmat1220

V.G. Dubrovskii, G.E. Tsyrlin, and V.M. Ustinov, Fiz. Tekh. Poluprovodn. 43, 1585 (2009).

https://doi.org/10.1134/S106378260912001X

P. Mohan, J. Motohisa, and T. Fukui, J. Phys. Condens.Matter 88, 013110 (2006).

https://doi.org/10.1063/1.2161576

P. Mohan, J. Motohisa, and T. Fukui, Appl. Phys. Lett. 88, 133105 (2006).

https://doi.org/10.1063/1.2189203

M. Heigoldt, J. Arbiol, D. Spirkoska, J.M. Rebled, C.S. Conesa-Boj, G. Abstreiter, F. Peiro, J.R. Morantece, and A. Fontcuberta i Morral, J. Mater. Chem. 19, 840 (2009).

https://doi.org/10.1039/b816585h

A. Fontcuberta i Morral, D. Spirkoska, J. Arbiol, M. Heigoldt, J.R. Morante, and G. Abstreiter, Small 4, 899 (2008).

https://doi.org/10.1002/smll.200701091

X.F. Wang and X.L. Lei, Phys. Rev. B 49, 4780 (1994).

https://doi.org/10.1103/PhysRevB.49.4780

N. Tkach, A. Makhanets, and N. Dovganiuk, Phys. Solid State 51, 2529 (2009).

https://doi.org/10.1134/S1063783409120166

M. Tkach, O. Makhanets, M. Dovganiuk, and O. Voitsekhivska, Physica E 41, 1469 (2009).

https://doi.org/10.1016/j.physe.2009.04.018

O. Makhanets, N. Tsiupak, and O. Voitsekhivska, in Proceedings of the 12th International Balkan Workshop on Applied Physics, edited by V. Ciupina, H. Alexandru, and M. Cirty (Ovidius Univ. Press, Constanta, 2011), p. 94.

S.I. Pekar, Research in Electron Theory of Crystals (United States Atomic Energy Commission, Washington, DC, 1963).

L.D. Landau and S.I. Pekar, Zh. Èksp. Teor. Fiz. 18, 419 (1948)

L.D. Landau and S.I. Pekar, Ukr. J. Phys. 53, Special issue, 71 (2008).

E. Jahnke, F. Emde, and F. Lösch, Tafeln höherer Funktionen (Teubner, Stuttgart, 1960).

M.A. Stroscio and M. Dutta, Phonons in Nanostructures (Cambridge Univ. Press, Cambridge, 2001).

https://doi.org/10.1017/CBO9780511534898

M. Tkach, Quasiparticles in Nanoheterosystems (Ruta, Chernivtsi, 2003) (in Ukrainian).

Published

2021-12-05

How to Cite

Makhanets, O., Tsiupak, N., & Gutsul, V. (2021). Phonon Spectra and Electron-Phonon Interaction in a Combined Cylindrical Semiconductor Nanotube. Ukrainian Journal of Physics, 57(10), 1060. https://doi.org/10.15407/ujpe57.10.1060

Issue

Section

Nanosystems