Polar Properties and Hysteresis Loops in Multilayered Thin Films Ferroelectric/Virtual Ferroelectric

Authors

  • E.A. Eliseev V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • M.D. Glinchuk I.M. Frantsevich Institute for Problems of Materials Science, Nat. Acad. of Sci. of Ukraine
  • A.N. Morozovska V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • Ya.V. Yakovenko Taras Shevchenko National University of Kyiv, Faculty of Physics

DOI:

https://doi.org/10.15407/ujpe57.10.1038

Keywords:

-

Abstract

In the framework of Landau–Ginzburg–Devonshire (LGD) phenomenological theory, the influence of misfit strains, surface energy, and finite-size effects on phase diagrams, polar properties, and hysteresis loops has been calculated for multilayered thin films of the type ferroelectric/virtual ferroelectric. The influence of elastic deformations that arise at the interface thin film–substrate owing to a mismatch between the lattice constants in the film and the substrate on the phase diagrams of multilayered thin films virtual ferroelectric SrTiO3/ferroelectric BaTiO3 has been studied for the first time. In contrast to bulk BaTiO3, in which only four phases (cubic, tetragonal, orthorhombic, and rhombohedral) can exist, it turned out that six thermodynamically stable BaTiO3 phases (paraelectric phase and tetragonal (FEc), two monoclinic (FEaac and FEac), and two orthorhombic (FEa and FEaa) ferroelectric phases) can exist in multilayered SrTiO3/BaTiO3 films. The main polar properties of hysteresis loops (shape, coercive field, and spontaneous polarization) in thin multilayered SrTiO3/BaTiO3 films are calculated. It is shown that the system demonstrates a strong dependence of its polar properties on the thickness of SrTiO3 and BaTiO3 layers, as well as on the elastic misfit strains, with SrTiO3 playing the role of dielectric layer: the thicker the layer, the stronger is the
depolarization field, which, in its turn, reduces the spontaneous polarization in the BaTiO3 film.

References

R. Nath, S. Zhong, S.P. Alpay, B.D. Huey, and M.W. Cole, Appl. Phys. Lett. 92, 012916 (2008).

https://doi.org/10.1063/1.2825287

J.Y. Jo, R.J. Sichel, E.M. Dufresne, H.N. Lee, S.M. Nakhmanson, and P.G. Evans, Phys. Rev. B 82, 174116 (2010).

J.Y. Jo, R.J. Sichel, H.N. Lee, S.M. Nakhmanson, E.M. Dufresne, and P.G. Evans, Phys. Rev. Lett. 104, 207601 (2010).

V.A. Stephanovich, I.A. Luk'yanchuk, and M.G. Karkut, Phys. Rev. Lett. 94, 047601 (2005).

https://doi.org/10.1103/PhysRevLett.94.047601

D.G. Schlom, L.-Q. Chen, X. Pan, A. Schmehl, and M.A. Zurbuchen, J. Am. Ceram. Soc. 91, 2429 (2008).

https://doi.org/10.1111/j.1551-2916.2008.02556.x

X. Wu, K.M. Rabe, and D. Vanderbilt, Phys. Rev. B 83, 020104 (2011).

A.L. Roytburd, S. Zhong, and S.P. Alpay, Appl. Phys. Lett. 87, 092902 (2005).

https://doi.org/10.1063/1.2032601

E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J.-M. Triscone, and P. Ghosez, Nature 452, 732 (2008).

https://doi.org/10.1038/nature06817

D.D. Fong, G.B. Stephenson, S.K. Streiffer, J.A. Eastman, O. Auciello, P.H. Fuoss, and C. Thompson, Science 304, 1650 (2004).

https://doi.org/10.1126/science.1098252

M.B. Okatan, J.V. Mantese, and S.P. Alpay, Acta Mater. 58, 39 (2010).

https://doi.org/10.1016/j.actamat.2009.08.055

M.B. Okatan, I.B. Misirlioglu, and S.P. Alpay, Phys. Rev. B 82, 094115 (2010).

https://doi.org/10.1103/PhysRevB.82.094115

I.B. Misirlioglu, G. Akcay, and S. Zhong, J. Appl. Phys. 101, 036107 (2007).

https://doi.org/10.1063/1.2433766

N.A. Pertsev, V.G. Kukhar, H. Kohlstedt, and R. Waser, Phys. Rev. B 67, 054107 (2003).

https://doi.org/10.1103/PhysRevB.67.054107

A. Sharma, Z.-G. Ban, S.P. Alpay, and J.V. Mantese, J. Appl. Phys. 95, 3618 (2004).

https://doi.org/10.1063/1.1649460

Z.-G. Ban and S. P. Alpay, Appl. Phys. Lett. 82, 3499 (2003).

https://doi.org/10.1063/1.1576503

B.D. Qu, W.L. Zhong, and R.H. Prince, Phys. Rev. B 55, 11218 (1997).

https://doi.org/10.1103/PhysRevB.55.11218

K.H. Chew, Y. Ishibashi, and F.G. Shin, Ferroelect. 357, 133 (2007).

https://doi.org/10.1080/00150190701542430

N.A. Pertsev, A.G. Zembilgotov, and A.K. Tagantsev, Phys. Rev. Lett. 80, 1988 (1998).

https://doi.org/10.1103/PhysRevLett.80.1988

J.S. Speck and W. Pompe, J Appl. Phys. 76, 466 (1994).

https://doi.org/10.1063/1.357097

G. Rupprecht and R.O. Bell, Phys. Rev. A 135, 748 (1964).

https://doi.org/10.1103/PhysRev.135.A748

C.-L. Jia, V. Nagarajan, J.-Q. He, L. Houben, T. Zhao, R. Ramesh, K. Urban, and R. Waser, Nature Mater. 6, 64 (2007).

https://doi.org/10.1038/nmat1808

G.A. Smolenskii, V.A. Bokov, V.A. Isupov, N.N. Krainik, R.E. Pasynkov, and A.I. Sokolov, Ferroelectrics and Related Materials (Gordon and Breach, New York, 1984).

Y.L. Wang, A.K. Tagantsev, D. Damjanovic, N. Setter, V.K. Yarmarkin, and A.I. Sokolov, J. Appl. Phys. 101, 104115 (2007).

https://doi.org/10.1063/1.2733744

A. Fleury and J.M. Worlock, Phys. Rev. 174, 613 (1968).

https://doi.org/10.1103/PhysRev.174.613

H. Uwe and T. Sakudo, Phys. Rev. B 15, 337 (1977).

https://doi.org/10.1103/PhysRevB.15.337

The order of magnitude g~10^-10 V m^3/K corresponds to ordinary "rigid" ferroelectrics like PTO, whereas g~ 10^-9 V m^3/K seems to be more typical of virtual ferroelectrics, "soft" ferroelectrics, and ferroelectric semiconductors.

A. Pertsev, A.K. Tagantsev, and N. Setter, Phys. Rev. B 61, 825 (2000).

https://doi.org/10.1103/PhysRevB.61.R825

Published

2021-12-05

How to Cite

Eliseev Є., Glinchuk М., Morozovska Г., & Yakovenko Я. (2021). Polar Properties and Hysteresis Loops in Multilayered Thin Films Ferroelectric/Virtual Ferroelectric. Ukrainian Journal of Physics, 57(10), 1038. https://doi.org/10.15407/ujpe57.10.1038

Issue

Section

Solid matter