Direct Two-Photon Excitation of Isomeric Transition in Thorium-229 Nucleus

Authors

  • V.I. Romanenko Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • Ye.G. Udovitskaya Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • L.P. Yatsenko Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • A.V. Romanenko Taras Shevchenko National University of Kyiv
  • A.N. Litvinov St. Petersburg State Polytechnical University
  • G.A. Kazakov St. Petersburg State Polytechnical University

DOI:

https://doi.org/10.15407/ujpe57.11.1119

Keywords:

-

Abstract

A possibility of the two-photon excitation of an isomeric state in a nucleus of thorium-229 has been discussed. The fluorescence intensity of the excitation is demonstrated to be identical for the irradiation of nuclei with either monochromatic light or polychromatic radiation consisting of a sequence of short light
pulses of the same intensity. The two-photon excitation of Th3+ ion in an electromagnetic trap with a focused laser beam with a wavelength of about 320 nm and power of 100 mW can lead to the absorption saturation, at which the fluorescence emission with the frequency of the transition in a nucleus is maximal. In crystals doped with Th4+ to a concentration of about 1018 cm-3 and irradiated with a laser radiation 10 W in power, the emission of several photons per
second with a wavelength of about 160 nm becomes possible.

References

W. Markowitz, R. Glenn Hall, L. Essen, and J.V.L. Parry, Phys. Rev. Lett. 1, 105 (1958).

https://doi.org/10.1103/PhysRevLett.1.105

T.E. Parker, Metrologia 47, 1 (2010).

https://doi.org/10.1088/0026-1394/47/1/001

C.W. Chou, D.B. Hume, J.C.J. Koelemeij, D.J. Wineland, and T. Rosenband, Phys. Rev. Lett. 104, 070802 (2010).

https://doi.org/10.1103/PhysRevLett.104.070802

B.R. Beck, C.Y. Wu, P. Beiersdorfer, G.V. Brown, J.A. Becker, K.J. Moody, J.B. Wilhelmy, F.S. Porter, C.A Kilbourne, and R.L. Kelley, in Proceedings of the 12th International Conference on Nuclear Reaction Mechanisms, Varenna, Italy, 2009 (2009), paper LLNL-PROC-415170.

E. Peters, S.A. Diddams, P. Fendel, S. Reinhardt, T.W. Hansch, and Th. Udem, Opt. Express 17, 9183 (2009).

https://doi.org/10.1364/OE.17.009183

V.V. Flambaum, Phys. Rev. Lett. 97, 092502 (2006).

https://doi.org/10.1103/PhysRevLett.97.092502

E. Litvinova, H. Feldmeier, J. Dobaczewski, and V. Flambaum, Phys. Rev. C 79, 064303 (2009).

https://doi.org/10.1103/PhysRevC.79.064303

E. Peik, K. Zimmermann, M. Okhapkin, and Chr. Tamm, in Proceedings of the 7th Symposium on Frequency Standards, and Metrology, edited by L. Maleki (World Scientific, Singapore, 2009), p. 532; arXiv:0812.3458.

S.G. Porsev, V.V. Flambaum, E. Peik, and Chr. Tamm, Phys. Rev. Lett. 105, 182501 (2010).

https://doi.org/10.1103/PhysRevLett.105.182501

C.J. Campbell, A.V. Steele, L.R. Churchill, M.V. DePalatis, D.E. Naylor, D.N. Matsukevich, A. Kuzmich, and M.S. Chapman, Phys. Rev. Lett. 102, 233004 (2009).

https://doi.org/10.1103/PhysRevLett.102.233004

C.J. Campbell, A.G. Radnaev, and A. Kuzmich, Phys. Rev. Lett. 106, 223001 (2011).

https://doi.org/10.1103/PhysRevLett.106.223001

W.G. Rellergert, D. DeMille, R.R. Greco, M.P. Hehlen,

J.R. Torgerson, and E.R. Hudson, Phys. Rev. Lett. 104, 200802 (2010).

G.A. Kazakov, M. Schreitl, G. Winkler, J.H. Sterba, G. Steinhauser, and T. Schumm, arXiv: atom-ph/1110.0741v1 (2011).

L.S. Vasilenko, V.P. Chebotaev, and A.V. Shishaev, Pis'ma Zh. Eksp. Teor. Fiz. 12, 161 (1970).

S.G. Porsev and V.V. Flambaum, Phys. Rev. A 81, 042516 (2010).

https://doi.org/10.1103/PhysRevA.81.042516

G. Audi, O. Bersillon, J. Blachot, and A.H. Wapstra, Nucl. Phys. A 729, 3 (2003).

https://doi.org/10.1016/j.nuclphysa.2003.11.001

S.G. Nilsson, Kgl. Danske Videnskab. Selskab. Mat.-Fys. Medd. 29, No. 16, 1 (1955).

E. Ruchowska, W. A. Płóciennik, J. Żylicz, H. Mach, J. Kvasil, A. Algora, N. Amzal, T. Bäck, M.G. Borge, R. Boutami, P.A. Butler, J. Cederkäll, B. Cederwall, B. Fogelberg,

L.M. Fraile, H.O.U. Fynbo, E. Hagebø , P. Hoff, H. Gausemel, A. Jungclaus, R. Kaczarowski, A. Kerek, W. Kurcewicz, K. Lagergren, E. Nacher, B. Rubio, A. Syntfeld, O. Tengblad, A.A. Wasilewski, and L. Weissman, Phys. Rev. C 73, 044326 (2006).

A.M. Dykhne and E.V. Tkalya, Pis'ma Zh. Eksp. Teor. Fiz. 67, 233 (1998).

C.E. Bemis, F.K. McGowan, J.L.C. Ford, W.T. Milner, R.L. Robinson, P.H. Stelson, G.A. Leander, and C.W. Reich, Phys. Scr. 38, 657 (1988).

https://doi.org/10.1088/0031-8949/38/5/004

E.V. Tkalya, Phys. Rev. Lett. 106, 162501 (2011).

https://doi.org/10.1103/PhysRevLett.106.162501

L.D. Landau and E.M. Lifshitz, Mechanics (Butterworth-Heinemann, Oxford, 2001).

B.W. Shore, The Theory of Coherent Atomic Excitation (Wiley, New York, 1990).

V.S. Letokhov and V.P. Chebotayev, Nonlinear Laser Spectroscopy (Springer, Berlin, 1977).

https://doi.org/10.1007/978-3-540-37541-8

R.H. Dicke, Phys. Rev. 89, 472 (1953).

https://doi.org/10.1103/PhysRev.89.472

R.J. Cook, Phys. Rev. A 21, 268 (1980).

https://doi.org/10.1103/PhysRevA.21.268

V.B. Mikhailik, H. Kraus, J. Imber, and D. Wahl, Nucl. Instrum. Methods A 566, 522 (2006).

https://doi.org/10.1016/j.nima.2006.06.063

Downloads

Published

2021-12-03

How to Cite

Romanenko, V., Udovitskaya, Y., Yatsenko, L., Romanenko, A., Litvinov, A., & Kazakov, G. (2021). Direct Two-Photon Excitation of Isomeric Transition in Thorium-229 Nucleus. Ukrainian Journal of Physics, 57(11), 1119. https://doi.org/10.15407/ujpe57.11.1119

Issue

Section

Optics, lasers, and quantum electronics