Kinetics of the First-Order Phase Transition in a Varying Temperature Field

Authors

  • Yu.F. Zabashta Taras Shevchenko National University of Kyiv, Faculty of Physics
  • V.I. Kovalchuk Taras Shevchenko National University of Kyiv, Faculty of Physics
  • L.A. Bulavin Taras Shevchenko National University of Kyiv, Faculty of Physics

DOI:

https://doi.org/10.15407/ujpe66.11.978

Keywords:

first-order phase transition, temperature field, fractal dimension

Abstract

A continual model based on the concepts of the classical theory of phase transformations has been proposed for the first-order phase transition. Using this model, a general formula that relates the relative volume of the initial phase to the temperature varying in the time is obtained. The corresponding formula is also constructed for the case of linear temperature rise. An experimental scheme allowing the fractal dimension and the surface tension of newphase aggregates to be determined is proposed.

References

M. Volmer. Kinetik der Phasenbildung (Verlag Theodor Steinkopff, 1939).

J. Frenkel. Kinetic Theory of Liquids (Peter Smith Publisher, 1984) [ISBN: 978-0-844-62094-7].

G.S. Zhdanov. Solid State Physics (Moscow State University, 1962) (in Russian).

A. Sharples. Introduction to Polymer Crystallization (Edward Arnold, 1966) [ISBN: 978-0713121384].

A.P. Karmanov, Yu.B. Monakov. Lignin. Structural organisation and fractal properties. Russ. Chem. Rev. 72, 715 (2003).

https://doi.org/10.1070/RC2003v072n08ABEH000767

M. Ioelovich. Study of fractal dimensions of microcrystalline cellulose obtained by the spray-drying method. Fractal Fract. 3, 3 (2019).

https://doi.org/10.3390/fractalfract3010003

P.T. Anastas, J.C. Warner. Green Chemistry: Theory and Practice (Oxford University Press, 1998) [ISBN: 978-0198506980].

K. Kamide. Cellulose and Cellulose Derivatives (Elsevier Science, 2005) [ISBN: 978-0080454443].

H. Garate, King-Wo Li, D. Bouyer, P. Guenoun. Optical tracking of relaxation dynamics in semi-dilute hydroxypropylcellulose solutions as a precise phase transition probe. Soft Matter 13, 7161 (2017).

https://doi.org/10.1039/C7SM01501A

T.P. Lodge, A.L. Maxwell, J.R. Lott, P.W. Schmidt, J.W. McAllister, S. Morozova, F.S. Bates, Y. Li, R.L. Sammler. Gelation, phase separation, and fibril formation in aqueous hydroxypropylmethylcellulose solutions. Biomacromolecules 19, 816 (2018).

https://doi.org/10.1021/acs.biomac.7b01611

J.P.A. Fairclough, H. Yu, O. Kelly, A.J. Ryan, R.L. Sammler, M. Radler. Interplay between gelation and phase separation in aqueous solutions of methylcellulose and hydroxypropylmethylcellulose. Langmuir 28, 10551 (2012).

https://doi.org/10.1021/la300971r

R. Nigmatullin, V. Gabrielli, J.C. Mu˜ noz-Garcia, A.E. Lewandowska, R. Harniman, Y.Z. Khimyak, J. Ang'ulo, S.J. Eichhorn. Thermosensitive supramolecular and colloidal hydrogels via self-assembly modulated by hydrophobized cellulose nanocrystals. Cellulose 26, 529 (2019).

https://doi.org/10.1007/s10570-018-02225-8

A. Oleinikova, L. Bulavin, V. Pipich. Critical anomaly of shear viscosity in a mixture with an ionic impurity. Chem. Phys. Lett. 278, 121 (1997).

https://doi.org/10.1016/S0009-2614(97)00945-7

O.M. Alekseev, Yu.F. Zabashta, V.I. Kovalchuk, M.M. Lazarenko, L.A. Bulavin. The structure of polymer clusters in aqueous solutions of hydroxypropylcellulose. Ukr. J. Phys. 64, 238 (2019).

https://doi.org/10.15407/ujpe64.3.238

O.M. Alekseev, Yu.F. Zabashta, V.I. Kovalchuk, M.M. Lazarenko, E.G. Rudnikov, L.A. Bulavin. Structural transition in dilute solutions of rod-like macromolecules. Ukr. J. Phys. 65, 50 (2020).

https://doi.org/10.15407/ujpe65.1.50

Published

2021-11-30

How to Cite

Zabashta, Y., Kovalchuk, V., & Bulavin, L. (2021). Kinetics of the First-Order Phase Transition in a Varying Temperature Field. Ukrainian Journal of Physics, 66(11), 978. https://doi.org/10.15407/ujpe66.11.978

Issue

Section

Liquid crystals and polymers

Most read articles by the same author(s)

<< < 1 2 3