Differential Cross-Section in the Presence of a Weak Laser Field for Inelastic Scattering

Authors

  • S.H. Dhobi Innovative Ghar Nepal, Robotics Academy of Nepal, Department of Physics, Patan Multiple Campus, Tribhuvan University
  • K. Yadav Innovative Ghar Nepal, Department of Physics, Patan Multiple Campus, Tribhuvan University
  • S.P. Gupta Innovative Ghar Nepal, Department of Physics, Patan Multiple Campus, Tribhuvan University
  • J.J. Nakarmi Innovative Ghar Nepal, Department of Physics, Patan Multiple Campus, Tribhuvan University
  • B. Koirala Innovative Ghar Nepal, Department of Physics, Patan Multiple Campus, Tribhuvan University

DOI:

https://doi.org/10.15407/ujpe67.4.227

Keywords:

inelastic scattering, laser field, scattering angle, differential cross-section

Abstract

The objective of this work is to study the differential cross- section in the presence of a weak laser field (visible and UV) in the case of inelastic scattering. When the target absorbs the energy, the differential cross section increases, according to the theoretically constructed model. The differential cross-section initially decreases to a minimum and finally takes a maximum value, when the target emits the energy. The energy emission occurs at 5 eV, 10 eV, 13 eV, 16 eV, 20 eV, 25 eV, and 30 eV. In addition, the differential cross-section also increases with the scattering angle.

References

A. Cionga, F. Ehlotzky, G. Zloh. Elastic electron scattering by excited hydrogen atoms in a laser field. Phys. Rev. A 64, 043401 (2001).

https://doi.org/10.1103/PhysRevA.64.043401

G. Buica. Inelastic scattering of electrons by metastable hydrogen atoms in a laser field. Phys. Rev. A 92, 033421 (2015).

https://doi.org/10.1103/PhysRevA.92.033421

R.F. Egerton. Electron energy-loss spectroscopy in the TEM. Rep. Prog. Phys. 72, (2009).

https://doi.org/10.1088/0034-4885/72/1/016502

M. Traini. Electric polarizability of hydrogen atom: a sum rule approach. Eur. J. Phys. 17, (1996).

https://doi.org/10.1088/0143-0807/17/1/006

D. Baye. Exact nonrelativistic polarizabilities of the hydrogen atom with the Lagrange-mesh method (2012) [DOI: https://core.ac.uk/download/pdf/193934201.pdf].

https://doi.org/10.1103/PhysRevA.86.062514

I. Stetcu, S. Quaglioni, J.L. Friar, A.C. Hayes, P. Navratil. Electric dipole polarizabilities of hydrogen and helium isotopes. arxiv.org/pdf/0904.3732.pdf.

P. Schwerdtfeger, J.K. Nagle. 2018 Table of static dipole polarizabilities of the neutral elements in the periodic table. Mol. Phys. 117, 9 (2019).

https://doi.org/10.1080/00268976.2018.1535143

S. Cohen, S.I. Themelis, K.D. Sen. dynamic dipole polarizabilities of the ground and excited states of confined hydrogen atom computed by means of a mapped fourier Grid method. Int. J. Quantum Chem. 108, 351 (2008).

https://doi.org/10.1002/qua.21459

J. Badziak. Laser-driven ion acceleration: methods, challenges and prospects, International Conferences on Research and Applications of Plasmas. IOP Conf. Series: J. Phys.: Conf. Series 959, 012001 (2018).

https://doi.org/10.1088/1742-6596/959/1/012001

D.A. Telnov, S.I. Chu. Angular distributions from twophoton detachment of H'A near ionization threshold: Laserfrequency and -intensity effects. Phys. Rev. A 66, 063409 (2002).

https://doi.org/10.1103/PhysRevA.66.063409

L. Treiber, B. Thaler, P. Heim, M. Stadlhofer, R. Kanya, M.K. Zeiler, M. Koch. Observation of laser-assisted electron scattering in superfluid helium. Nat. Commun. 12, 4204 (2021).

https://doi.org/10.1038/s41467-021-24479-w

R. Kanya, K. Yamanouchi. Femtosecond laser-assisted electron scattering for ultrafast dynamics of atoms and molecules. Atoms 7, 85 (2019).

https://doi.org/10.3390/atoms7030085

S.A. Bidvari, R. Fathi. Triple and double differential cross sections for ionization of atomic hydrogen by positive-bare ions impact. Eur. Phys. J. D 74, 55 (2020).

https://doi.org/10.1140/epjd/e2020-100468-0

I. Ajana, A. Makhoute, D. Khalil, A. Dubois. The second Born approximation in laser assisted (e, 2e) collisions in hydrogen. J. Phys. B: At. Mol. Opt. Phys. 47, 175001 (2014).

https://doi.org/10.1088/0953-4075/47/17/175001

B.A. Harak, B.N. Kim, C.M. Weaver, N.L.S. Martin, M. Siavashpouri, B. Nosarzewski. Effects of polarization direction on laser-assisted free-free scattering. Plasma Sources Sci. Technol. 25, 035021 (2016).

https://doi.org/10.1088/0963-0252/25/3/035021

K. Yadav, J.J. Nakarmi. The elastic scattering of an electron from the target by absorbing a photon via free-free scattering theory. Int. J. Mech. Eng. And Appli. 2, 6 (2014).

https://doi.org/10.11648/j.ijmea.20140206.12

K. Yadav, J.J. Nakarmi. Elastic scattering of an electron via free-free scattering theory. Condens. Matter Phys. 81 (2015).

B. Wallbank, J.K. Holmes. Laser-assisted elastic electron scattering from helium. Can. J. Phys. 79, 10 (2001).

https://doi.org/10.1139/p01-115

C.J. Joachain. Laser-assisted electron-atom collisions. Laser Chem. 11, 273 (1991).

https://doi.org/10.1155/LC.11.273

Downloads

Published

2022-07-06

How to Cite

Dhobi, S., Yadav, K., Gupta, S., Nakarmi, J., & Koirala, B. (2022). Differential Cross-Section in the Presence of a Weak Laser Field for Inelastic Scattering. Ukrainian Journal of Physics, 67(4), 227. https://doi.org/10.15407/ujpe67.4.227

Issue

Section

Optics, atoms and molecules