Optical Parameters of As-Deposited and Annealed (Ga0.3In0.7)2Se3 Thin Films

Authors

  • M. Pop Faculty of Physics, Uzhhorod National University
  • M. Kranjčec University North
  • I. Studenyak Faculty of Physics, Uzhhorod National University

DOI:

https://doi.org/10.15407/ujpe66.10.885

Keywords:

thin film, spectral ellipsometry, transmission spectra, refractive index, energy pseudogap, Urbach energy

Abstract

The (Ga0.3In0.7)2Se3 films deposited by the thermal evaporation technique are annealed in the inert atmosphere (argon) for 1 h at temperatures of 50, 100, and 150 C. The spectral ellipsometry is applied for measuring the spectral dependences of the refractive and extinction coefficients of as-deposited and annealed (Ga0.3In0.7)2Se3 films. The optical transmission spectra, as well as the optical absorption spectra of (Ga0.3In0.7)2Se3 films, are studied depending on the annealing temperature. The optical absorption edge for annealed (Ga0.3In0.7)2Se3 films is shifted to the short-wavelength region and broadens, as the annealing temperature increases. Parameters of the Urbach absorption edge are determined for as-deposited and annealed (Ga0.3In0.7)2Se3 films. The spectral dependences of the refractive index are analyzed in the framework of the Wemple–DiDomenico model. The nonlinear increase of the energy pseudogap, Urbach energy, and refractive index with the annealing temperature are revealed.

References

S. Popovi'c, B. Celustka, Z. Ruzѕi'c-Toros, D. Broz. X-ray diffraction study and semiconducting properties of the system Ga2Se3-In2Se3. Phys. Stat. Sol. (a) 41, 255 (1977).

https://doi.org/10.1002/pssa.2210410131

J. Ye, T. Yoshida, Y. Nakamura, O. Nittono. Realization of giant optical rotatory power for red and infrared light

using III2VI3 compound semiconductor (GaxIn1−x)2Se3. Jap. J. Appl. Phys. 35, 4395 (1996).

https://doi.org/10.1143/JJAP.35.4395

M. Kranjсec, B. Celustka, B. Etlinger, D. Desnica. The indirect allowed optical transition in (Ga0.3In0.7)2Se3. Phys. Stat. Sol. (a) 109, 329 (1988).

https://doi.org/10.1002/pssa.2211090136

M. Kranjсec, D.I. Desnica, B. Celustka, Gy.Sh. Kovacs, I.P. Studenyak. Fundamental optical absorption edge and

compositional disorder in y1-(GaxIn1−x)2Se3 single crystals. Phys. Stat. Sol. (a) 144, 223 (1994)

https://doi.org/10.1002/pssa.2211440125

M. Kranjсec, I.P. Studenyak, Yu.M. Azhniuk. Photoluminescence and optical absorption edge in y1-(GaxIn1−x)2Se3 mixed crystals. Phys. Stat. Sol. (b) 238, 439 (2005).

https://doi.org/10.1002/pssb.200540073

J. Ye, T. Yoshida, Y. Nakamura, O. Nittono. Optical activity in the vacancy ordered III2VI3 compound semiconductor (Ga0.3In0.7)2Se3. Appl. Phys. Lett. 67, 3066 (1995).

https://doi.org/10.1063/1.114866

M. Kranjсec, I.D. Desnica, B. Celustka, A.N. Borec, Gy.Sh. Kovacs, Z.P. Hadmashy, L.M. Suslikov, I.P. Studenyak. On some crystal-optic properties of y1-(GaxIn1−x)2Se3 single crystals. Phys. Stat. Sol. (a) 153, 539 (1996).

https://doi.org/10.1002/pssa.2211530229

M. Kranjсec, I.P. Studenyak, L.M. Suslikov, Gy.Sh. Kovacs, E. Cerovec. Birefringence in y1-(GaxIn1−x)2Se3 single crystals. Opt. Mat. 25, 307 (2004).

https://doi.org/10.1016/j.optmat.2003.08.005

M. Kranjсec, I.D. Desnica, I.P. Studenyak, B. Celustka, A.N. Borec, I.M. Yurkin, Gy.Sh. Kovacs. Acousto-optic modulator with a (Ga0.4In0.6)2Se3 monocrystal as the active element. Applied Optics 36, 490 (1997).

https://doi.org/10.1364/AO.36.000490

I.P. Studenyak, M. Kranjcec, V.Yu. Izai, V.I. Studenyak. M.M. Pop, L.M. Suslikov. Ellipsometric and spectrometric

studies of (Ga0.2In0.8)2Se3 thin film. Ukr. Fiz. Zhurn. 65, 231 (2020).

https://doi.org/10.15407/ujpe65.3.231

I. Studenyak, M. Kranjсec, M. Pop, A. Solomon, L. Suslikov. Influence of X-ray irradiation on optical parameters of (Ga0.2In0.8)2Se3 films. Proc. SPIE 11456, Optical Fibers and Their Applications 2020 1145605 (2020).

https://doi.org/10.1109/NAP51477.2020.9309611

I.P. Studenyak, M.M. Pop, M. Kranjˇсec, A.M. Solomon. Optical studies of X-ray irradiated (Ga0.4In0.6)2Se3 films. Ukr. J. Phys. Opt. 21, 184 (2020).

https://doi.org/10.3116/16091833/21/4/184/2020

R. Swanepoel. Determination of the thickness and optical constants of amorphous silicon. J. Phys. E: Sci. Instrum., 16 1214 (1983). https://doi.org/10.1088/0022-3735/16/12/023

O.S. Heavens. Optical Properties of Thin Solid Films. (Dover, 1991).

D. Poelman, P.F. Smet. Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review. J. Phys. D: Appl. Phys. 36, 1850 (2003).

https://doi.org/10.1088/0022-3727/36/15/316

S.H. Wemple, M.Di Domenico. behaviour of the dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338 (1971). https://doi.org/10.1103/PhysRevB.3.1338

J. Tauc and A. Menth. States in the gap. J. Non-Cryst. Solids 8-10, 569 (1972). https://doi.org/10.1016/0022-3093(72)90194-9

G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein. Disorder and the optical-absorption edge of hydrogenated amorphous silicon. Phys. Rev. Lett. 47, 1480 (1981). https://doi.org/10.1103/PhysRevLett.47.1480

P. Studenyak, M. Kranjˇсec, M.V. Kurik. Urbach rule and disordering processes in Cu6P(S1−xSex)5Br1−y Iy superionic conductors. J. Phys. Chem. Solids 67, 807 (2006). https://doi.org/10.1016/j.jpcs.2005.10.184

Downloads

Published

2021-11-01

How to Cite

Pop, M., Kranjčec, M., & Studenyak, I. (2021). Optical Parameters of As-Deposited and Annealed (Ga0.3In0.7)2Se3 Thin Films. Ukrainian Journal of Physics, 66(10), 885. https://doi.org/10.15407/ujpe66.10.885

Issue

Section

Semiconductors and dielectrics

Most read articles by the same author(s)