Asymptotic Behavior of Boson Regge Trajectories

Authors

  • A.A. Trushevsky Bogolyubov Institute for Theoretical Physics, Academy of Sciences of the UkrSSR

DOI:

https://doi.org/10.15407/ujpe66.2.97

Keywords:

asymptotics, Regge trajectories

Abstract

The asymptotic behavior of boson Regge trajectories is studied. Upper and lower bounds on the asymptotic growth of the trajectories are obtained using the phase representation for the trajectories and a number of physical requirements. It is shown that, within the assumptions made, the asymptotic behavior of the trajectories is a square root.

References

A.I.Bugrij, J.Cohen-Tannoudji, L.L. Jenkovszky, N.A.Kobylinsky. Dual amplitudes with Mandelstam analyticity. Fortschr. Phys. 21, 427 (1973). https://doi.org/10.1002/prop.19730210902

L.L. Jenkovszky. Dual properties of DAMA. Yad. Fiz. 21, 645 (1975) (in Russian).

N.A. Kobylinsky. Properties of p-trajectories. Ukr. Fiz. Zh. 20, 163 (1975) (in Russian)

A.I. Bugrij, N.A. Kobylinsky. Are the p- and A2-trajectories linear? Ann. Phys. 32, 297 (1975) https://doi.org/10.1002/andp.19754870409

A.I. Bugrij, N.A. Kobylinsky. Simple analytical model of boson Regge trajectories. Preprint ITF-74-53P (Institute for Theoretical Physics, Kyiv, 1974) (in Russian).

T.A. Lasinski, A. Barbaro-Galtieri, R.L. Kelly et al. Review of particle properties. Rev. Mod. Phys. 45, No. 2, part II, 1 (1973). https://doi.org/10.1103/RevModPhys.45.S1

M. Ida. Asymptotic behaviour of infinitely rising meson trajectories. Prog. Theor. Phys. 40, 901 (1968). https://doi.org/10.1143/PTP.40.901

H. Fleming, T. Sawada. General results on the asymptotic behaviour of Regge trajectories. Lett. Nuovo Cim. 1, 1045 (1971). https://doi.org/10.1007/BF02770412

H. Fleming, E. Predazzi. Some speculations on the Pomeranchuk trajectory. Lett. Nuovo Cim. 4, 556 (1970). https://doi.org/10.1007/BF02755313

H. Fleming. Asymptotic behaviour of Regge trajectories and width. Lett. Nuovo Cim. 3, 363 (1972). https://doi.org/10.1007/BF02757223

H. Fleming, A.M. Filho. Upper bounds for the asymptotic behaviour of Regge trajectories. Nuovo Cim. 14A, 215 (1973). https://doi.org/10.1007/BF02734615

H. Fleming. Maximum behaviour of Regge trajectories at infinity. Phys. Rev. D 8, 1256 (1973). https://doi.org/10.1103/PhysRevD.8.1256

R.W. Childers. Second-sheet poles and maximum behaviour of Regge trajectories at infinity. Phys. Rev. D 2, 1178 (1970). https://doi.org/10.1103/PhysRevD.2.1178

N.N. Khuri. Possibility of an infinite sequence of Regge recurrences. Phys. Rev. Lett. 18, 1094 (1967). https://doi.org/10.1103/PhysRevLett.18.1094

R.W. Childers. Asymptotic behaviour of infinitely rising trajectories. Phys. Rev. Lett. 21, 868 (1968). https://doi.org/10.1103/PhysRevLett.21.868

C.E. Jones, V.L. Teplitz. Investigation of the hypotheses of Khuri's theorem of Regge-pole asymptotes. Phys. Rev. Lett. 19, 185 (1967). https://doi.org/10.1103/PhysRevLett.19.135

T. Becherrawy. Indefinitely rising trajectories. Lett. Nuovo Cim. 7, 867 (1973). https://doi.org/10.1007/BF02727508

D. Atkinson, K. Dietz. Indefinitely rising Regge trajectories and crossing symmetry. Phys. Rev. 177, 2579 (1969). https://doi.org/10.1103/PhysRev.177.2579

S. Mandelstam. Rising Regge trajectories and dynamical calculations. Comm. Nucl. Part. Phys. 3, No. 3, 65 (1969).

G. Epstein, P. Kaus. Rising meson trajectories. Phys. Rev. 166, 1633 (1968). https://doi.org/10.1103/PhysRev.166.1633

R.L. Ingraham. Connection of "parabolic" mass and width trajectories with high-energy scattering. Phys. Rev. D 6, 329 (1972). https://doi.org/10.1103/PhysRevD.6.329

J.C. Botke. Infinitely rising trajectories and existence of the Mandelstam representation. Nucl. Phys. B 40, 141 (1972). https://doi.org/10.1016/0550-3213(72)90537-8

H. Meldner. On infinitely rising Regge trajectories. Nuovo Cim. 51A, 882 (1967). https://doi.org/10.1007/BF02721758

R.C. Brower, J. Harter. Kinematic constraints for infinitely rising Regge trajectories. Phys. Rev. 164, 1841 (1967). https://doi.org/10.1103/PhysRev.164.1841

N.G. Antoniou, C.G. Georgalas, C.B. Kouris. On the decay of heavy Regge recurrences. Nuovo Cim. 16A, 135 (1973). https://doi.org/10.1007/BF02785521

D. Sivers. Characteristics of a Regge trajectory with a finite asymptotic phase. Phys. Rev. D 3, 2275 (1971). https://doi.org/10.1103/PhysRevD.3.2275

H. Fleming. Asymptotic behaviour of fermionic trajectories. Lett. Nuovo Cim. 7, 209 (1973). https://doi.org/10.1007/BF02727414

D.V. Shirkov. Properties of the Regge pole trajectories. Usp. Fiz. Nauk 102, 87 (1970) (in Russian). https://doi.org/10.3367/UFNr.0102.197009d.0087

M. Sugawara, A. Tubis. Phase representation of analytic function. Phys. Rev. 130, 2127 (1963). https://doi.org/10.2172/4664549

S. Caser, J.M. Kaplan, R. Omnes. Rising Regge trajectories and symmetry. Nuovo Cim. 59A, 571 (1969). https://doi.org/10.1007/BF02753162

H. Cheng, T.S. Wu. Regge poles for large coupling constants. Phys. Rev. D 5, 3189 (1972). https://doi.org/10.1103/PhysRevD.5.3189

Downloads

Published

2021-03-04

How to Cite

Trushevsky, A. (2021). Asymptotic Behavior of Boson Regge Trajectories. Ukrainian Journal of Physics, 66(2), 97. https://doi.org/10.15407/ujpe66.2.97

Issue

Section

Fields and elementary particles