Particle-Shape Effect on Thermophysical Properties of Model Liquid Systems. Solutions of Hard Spherocylinders

Authors

  • A.N. Grigoriev Taras Shevchenko National University of Kyiv, Faculty of Physics
  • Yu.G. Kuzovkov Taras Shevchenko National University of Kyiv, Faculty of Physics
  • I.V. Markov Taras Shevchenko National University of Kyiv, Faculty of Physics
  • L.A. Bulavin Taras Shevchenko National University of Kyiv, Faculty of Physics

DOI:

https://doi.org/10.15407/ujpe66.10.873

Keywords:

Monte Carlo method, thermophysical properties, influence of particle shape, free or available volume

Abstract

Thermophysical parameters (density, adiabatic and isothermal elastic moduli, thermal expansion coefficient, and Joule–Thomson coefficient) of a solutions of hard spherocylinders with various elongations have been determined using the Monte Carlo method applied to an isothermal-isobaric ensemble characterized by the reduced temperature T = 1.0 and the reduced pressures P = 1.0 and 3.5. It is shown that the shape of the particles, provided that their volumes are invariant, affects the thermophysical properties of the studied solutions indirectly through the free or available volume of the system, rather than the volume fraction occupied by the particles.

References

I.I. Adamenko, L.A. Bulavin. Physics of Liquids and Liquid Systems (ASMI, 2006) (in Ukrainian) [ISBN: 966-7653-32-3].

A. Furrer, J. Mesot, Th. Strassle. Neutron Scattering In Condensed Matter Physics (WSPC, 2009) [ISBN-13: 978-9810248314].

https://doi.org/10.1142/4870

L.A. Bulavin. Neutron Diagnostics of Liquid Matter State (Institute for Safety Problems of Nuclear Power Plants, 2012) (in Ukrainian) [ISBN: 978-966-02-6196-3].

L.A. Bulavin, O.A. Kyzyma, A.V. Nosovskyi. Neutron Diagnostics of Fullerene Solutions (Institute for Safety Problems of Nuclear Power Plants, 2019) (in Ukrainian) [ISBN: 978-966-02-8922-2].

L.A. Bulavin, N.V. Vygornitskii, N.I. Lebovka. Computer Modeling of Physical Systems (Intellekt, 2011) (in Russian)[ISBN: 978-5-91559-101-0].

GROMACS [https://www.gromacs.org].

LAMMPS Molecular Dynamics Simulator [https://lammps.sandia.gov].

Lee-Ping Wang, T.J. Martinez, V.S. Pande. Building force fields: An automatic, systematic, and reproducible approach. J. Phys. Chem. Lett. 5, 1885 (2014).

https://doi.org/10.1021/jz500737m

G. Pages, V. Gilard, R. Martino, M. Malrt-Martino. Pulsed-field gradient nuclear magnetic resonance measurements (PFG NMR) for diffusion ordered spectroscopy (DOSY) mapping Analyst 142, 3771 (2017).

https://doi.org/10.1039/C7AN01031A

R. Lustig. Direct molecular NVT simulation of the isobaric heat capacity, speed of sound and Joule-Thomson coefficient Mol. Simul. 37, 457 (2011).

https://doi.org/10.1080/08927022.2011.552244

A.N. Grigoriev, T.V. Kleshchonok, I.V. Markov, L.A. Bulavin. Monte-Carlo determination of adiabatic compressibility of hard spheres Mol. Simul. 46, 905 (2020).

https://doi.org/10.1080/08927022.2020.1789124

P.A. Monson, D.A. Kofke. Solid-fluid equilibrium: Insights from simple molecular models. Adv. Chem. Phys. 115, 113 (2000).

https://doi.org/10.1002/9780470141748.ch2

M. Marechal H.H. Goetzke, A. Hartel, H. Lowen. Inhomogeneous fluids of colloidal hard dumbbells: Fundamental measure theory and Monte Carlo simulations J. Chem. Phys. 135, 234510 (2011).

https://doi.org/10.1063/1.3664742

M. Dijkstra. Entropy-driven phase transitions in colloids: From spheres to anisotropic particles. Adv. Chem. Phys. 156, 35 (2014).

https://doi.org/10.1002/9781118949702.ch2

D. Frenkel. Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, 2001) [ISBN: 0-12-267351-4].

V.Ya. Antonchenko, A.S. Davydov, V.V. Ilyin. Fundamentals of Physics of Water (Naukova Dumka, 1991) (in Russian) [ISBN: 978-5-458-41070-0].

C. Vega, S. Lago, E. de Miguel. A fast algorithm to evaluate the shortest distance between rods Comput. Chem. 18, 55 (1994). https://doi.org/10.1016/0097-8485(94)80023-5

M.P. Allen, D.J. Tildesley. Computer Simulation of Liquids (Clarendon Press, 1986) [ISBN-13: 978-0198556459].

J.D. van der Waals. On the Continuity of the Gaseous and Liquid State (Dover Publication Inc., 1988) [ISBN: 0-486-49593-0].

W. Hoover, N. Hoover, K. Hanson. Exact hard disk free volume. J. Phys. Chem. 70, 1837 (1979). https://doi.org/10.1063/1.437660

R.J. Speedy. Pressure of hard-sphere systems. J. Phys. Chem. 92, 2016 (1988). https://doi.org/10.1021/j100318a061

J.-L. Barrat, J.-P. Hansen. Basic Concepts for Simple and Complex Liquids (Cambridge University Press, 2003) [ISBN-13: 978-0521789530]. https://doi.org/10.1017/CBO9780511606533

Published

2021-11-01

How to Cite

Grigoriev, A., Kuzovkov, Y., Markov, I., & Bulavin, L. (2021). Particle-Shape Effect on Thermophysical Properties of Model Liquid Systems. Solutions of Hard Spherocylinders. Ukrainian Journal of Physics, 66(10), 873. https://doi.org/10.15407/ujpe66.10.873

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics

Most read articles by the same author(s)