Three-Particle Fields as a Method to Describe Baryons in Scattering Processes

Authors

  • O.S. Potiienko Odesa Polytechnic National University
  • I.V. Sharph Odesa Polytechnic National University
  • N.O. Chudak Odesa Polytechnic National University
  • T.M. Zelentsova Odesa Polytechnic National University
  • G.G. Neboga Odesa Polytechnic National University
  • K.K. Merkotan Odesa Polytechnic National University

DOI:

https://doi.org/10.15407/ujpe69.10.695

Keywords:

multi-particle fields, subset of simultaneity, confinement

Abstract

A model of three-particle fields has been proposed to describe baryons in elastic and inelastic scattering processes. The model makes it possible to describe the confinement of quarks in a hadron and, simultaneously, the interaction of quarks in various hadrons, when the latter collide. Such an interaction is provided by the exchange of bound states between two gluons that are also in the confinement state.

References

L. Landau, R. Peierls. Quantenelektrodynamik im Konfigurationsraum. Zs. Phys. 62, 188 (1930).

https://doi.org/10.1007/BF01339793

V. Fock. Konfigurationsraum und zweite Quantelung. Zs. Phys. 75, 622 (1932).

https://doi.org/10.1007/BF01344458

F.A. Berezin. The Method of Second Quantization (Academic Press, 1966).

N.N. Bogoliubov, D.V. Shirkov. Introduction to the Theory of Quantized Fields. 3rd ed. (John Wiley, 1980).

N.N. Bogoliubov. Selected Works in Three Volumes. Vol. 2 (Naukova Dumka, 1970) (in Russian).

I.E. Tamm. Collection of Scientific Wokrs in Two Volumes. Vol. 2 (Nauka, 1975) (in Russian).

S. M. Dancoff. Non-adiabatic meson theory of nuclear forces. Phys. Rev. 78, 382 (1950).

https://doi.org/10.1103/PhysRev.78.382

V.P. Silin, V.Ya. Fainberg. The Tamm-Dancoff method. Usp. Fiz. Nauk 56, 569 (1955) (in Russian).

https://doi.org/10.3367/UFNr.0056.195508d.0569

O. Abe, K. Tanaka, K. Wilson. Light Front Tamm- Dancoff method: Hydrogen Atom and Positronium (Warsaw Symp., 1992).

P. Morgan. Multi-particle quantum fields for bound states and interactions. arXiv:1507.08299 [hep-th].

D. Ptashynskiy et al. Multiparticle fields on the subset of simultaneity. Ukr. J. Phys. 64, 732 (2019).

https://doi.org/10.15407/ujpe64.8.732

A. Bassetto, M. Ciafaloni, G. Marchesini. Jet structure and infrared sensitive quantities in perturbative QCD. Phys. Rep. 100, 201 (1983).

https://doi.org/10.1016/0370-1573(83)90083-2

T. Sj¨ostrand, S. Mrenna, P. Skands. PYTHIA 6.4 physics and manual. J. High Energy Phys. 2006, 026 (2006).

https://doi.org/10.1088/1126-6708/2006/05/026

R. P. Feynman. Photon-Hadron Interactions (Benjamin, 1972).

Y. L. Dokshitzer. Calculation of the structure functions for deep inelastic scattering and e+e− annihilation by perturbation theory in quantum chromodynamics. Sov. Phys. JETP 46, 641 (1977).

G. Altarelli, G. Parisi. Asymptotic freedom in parton language. Nucl. Phys. B 126, 298 (1977).

https://doi.org/10.1016/0550-3213(77)90384-4

F. Caravaglios, M. Moretti. An algorithm to compute Born scattering amplitudes without Feynman graphs. Phys. Lett. B 358, 332 (1995).

https://doi.org/10.1016/0370-2693(95)00971-M

P. Draggiotis, H. Kleiss, G. Papadopoulos. On the computation of multigluon amplitudes. Phys. Lett. B 439, 157 (1998).

https://doi.org/10.1016/S0370-2693(98)01015-6

L.D. Faddeev, A.A. Slavnov. Gauge Fields. An Introduction to Quantum Theory, 2nd edition (Addison-Wesley, 1991).

K.G. Wilson. Confinement of quarks. Phys. Rev. D 10, 2445 (1974).

https://doi.org/10.1103/PhysRevD.10.2445

M. Creutz. Feynman rules for lattice gauge theory. Rev. Mod. Phys. 50, 561 (1978).

https://doi.org/10.1103/RevModPhys.50.561

K.G. Wilson. Quarks and Strings on a Lattice (Springer, 1977) [ISBN: 978-1-4613-4210-6].

https://doi.org/10.1007/978-1-4613-4208-3_6

M. Creutz. Quarks, Gluons and Lattices (Cambridge University Press, 2023).

https://doi.org/10.1017/9781009290395

N. Chudak et al. Multi-particle quantum fields. Phys. J. 2, 181 (2016).

Y. Volkotrub et al. Multi-particle field operators in quantum field theory. arXiv:1510.01937 [physics.gen-ph].

N. Chudak et al. The calculation of the differential cross section of hadron elastic scattering by transferred fourmomentum within the perturbation theory. J. Phys. Stud. 23, 1101 (2019).

https://doi.org/10.30970/jps.23.1101

N. Chudak et al. Internal states of hadrons in relativistic reference frame. Ukr. J. Phys. 61, 1033 (2016).

O. Potiienko et al. Three-particle fields as a method of description of baryons in the scattering processes. arXiv:2010.06679 [hep-ph].

K. Merkotan et al. Multi-particle fields and Higgs mechanism. Zh. Fiz. Dosl. 22, 3001 (2018) (in Ukrainian).

https://doi.org/10.30970/jps.22.3001

Published

2024-10-29

How to Cite

Potiienko, O., Sharph, I., Chudak, N., Zelentsova, T., Neboga, G., & Merkotan, K. (2024). Three-Particle Fields as a Method to Describe Baryons in Scattering Processes. Ukrainian Journal of Physics, 69(10), 695. https://doi.org/10.15407/ujpe69.10.695

Issue

Section

Fields and elementary particles