Dipole-Center in ZnSe Crystals

Authors

  • V.Ya. Degoda Taras Shevchenko National University of Kyiv, Faculty of Physics
  • M.S. Brodyn Institute of Physics, Nat. Acad. of Sci. of Ukrain
  • M. Alizadeh Taras Shevchenko National University of Kyiv, Faculty of Physics
  • G.P. Podust Taras Shevchenko National University of Kyiv, Faculty of Physics
  • N.Yu. Pavlova Dragomanov National Pedagogical University
  • B.V. Kozhushko Institute of Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe67.1.62

Keywords:

ZnSe, luminescence centers in crystal phosphors, luminescence, dipole-center

Abstract

It has been found that the well-known luminescence band with a maximum near 630 nm in undoped ZnSe crystals is associated with the recombination of free electrons at localized holes and free holes at localized electrons. The result was achieved by comparing experimental values for the stationary luminescence intensity with the phosphorescence and thermally stimulated luminescence intensities, as well as values obtained for the conductivity under stationary conditions with curves registered for the relaxation current and the thermally stimulated conductivity. For the explanation of uncharacteristic spectral features of the luminescence band at about 630 nm, the existence of a complex (nonlocalized) center has been proposed, with a possibility for both recombination mechanisms to be realized at it. We propose to call it “dipole-center”. A theoretical analysis is performed for the multicenter model of crystal phosphor with a recombination dipole-center. It is shown that just the presence of the dipole-center gives rise to the appearance of a wide luminescence band with a general maximum at 630 nm. This fact allows a scintillation material of the new type to be proposed, where the dipole-center plays the role of a luminescence center that does not demand traps for a high luminescence yield.

References

V.I. Gavrilenko, A.M. Grekhov, D.V. Korbutyak, V.G. Litovchenko. Optical Properties of Semiconductors: A Handbook (Naukova Dumka, 1987) (in Russian).

N.K. Morozova, V.A. Kuznetsov, V.D. Ryzhikov. Zinc Selenide: Receiving and Optical Properties (Nauka, 1992) (in Russian).

V.E. Lashkarev, A.V. Lyubchenko, M.K. Sheinkman. Nonequilibrium Processes in Photoconductors (Naukova Dumka, 1981) (in Russian).

L.V. Atroshchenko, S.F. Burachas, L.P. Galchinetskii, B.V. Grinev, V.D. Ryzhikov, N.G. Starzhinskii. Scintillation Crystals and Ionization Radiation Detectors on Their Base (Naukova dumka, 1998) (in Russian).

I. Dafinei, M. Fasoli, F. Ferroni et al. Low temperature scintillation in ZnSe crystals, IEEE Trans. Nucl. Sci. 57, 1470 (2010).

https://doi.org/10.1109/TNS.2009.2035914

N. Starzhinkiy B. Grinyov, I. Zenya, V. Ryzhikov, L. Gal'-chinetskii, V. Silin. New trends in the development of AIIBVI-based scintillators. IEEE Trans. Nucl. Sci. 55, 1542 (2008).

https://doi.org/10.1109/TNS.2008.921929

V.D. Ryzhikov et al. Properties of semiconductor scintillators ZnSe(Te,O) and integrated scintielectronic radiation detectors based thereon. IEEE Trans. Nucl. Sci. 48, 356 (2001).

https://doi.org/10.1109/23.940080

M.S. Brodyn, V.Ya. Degoda, B.V. Kozhushko, A.O. Sofiienko, V.T. Vesna. Monocrystalline ZnSe as an ionising radiation detector operated over a wide temperature range, Radiat. Meas. 65, 36 (2014).

https://doi.org/10.1016/j.radmeas.2014.04.016

V.Ya. Degoda, A.O. Sofiienko. Effect of traps on current impulse from X-ray induced conductivity in wide-gap semiconductors. Physica B 426, 24 (2013).

https://doi.org/10.1016/j.physb.2013.05.041

V.Ya. Degoda, N.Yu. Pavlova, G.P. Podust, A.O. Sofiienko. Spectral structure of the X-ray stimulated phosphorescence of monocrystalline ZnSe. Physica B 465, 1 (2015).

https://doi.org/10.1016/j.physb.2015.02.021

M. Alizadeh, V.Ya. Degoda, B.V. Kozhushko, N.Y. Pavlova. Luminescence of dipole-centers in ZnSe crystals. Funct. Mater. 24, 206 (2017).

https://doi.org/10.15407/fm24.02.206

U. Kuhn, F. L¨uty. Paraelectric behavior of OH−-dipole centers in KCl crystals, Solid State Commun. 2, 281 (1964).

https://doi.org/10.1016/0038-1098(64)90326-6

U. Kuhn, F. L¨uty. Paraelectric behavior of OH−-dipole centers in KCl crystals. Solid State Commun. 88, 897 (1993).

https://doi.org/10.1016/0038-1098(93)90265-O

A.K. Kadashchuk, N.I. Ostapenko, Yu.A. Skryshevskii, V.I. Sugakov, T.O. Susokolova. Clusters of dipole chargecarrier capture centers in organic crystals. Mol. Cryst. Liq. Cryst. 201, 167 (1991).

https://doi.org/10.1080/00268949108038646

B.S.H. Royce, S. Mascarenhas. Dipole centers and optical absorption in CaF2:Ce3+. Phys. Rev. Lett. 27, 970 (1971).

https://doi.org/10.1103/PhysRevLett.27.970

R.A. Maier, T.A. Pomorski, P.M. Lenahan, C.A. Randall. Acceptor-oxygen vacancy defect dipoles and fully coordinated defect centers in a ferroelectric perovskite lattice: Electron paramagnetic resonance analysis of Mn2+ in single crystal BaTiO3. J. Appl. Phys. 118, 164102 (2015).

https://doi.org/10.1063/1.4934505

R. Baltramiejunas, V.D. Ryzhikov, V. Gavryushin, A. Kazlauskas, G. Raciukaitis, V.I. Silin, D. Juodzbalis, V. Stepankevicius. Luminescent and nonlinear spectroscopy of recombination centers in isovalent doped ZnSe : Te crystals. J. Luminesc. 52, 71 (1992).

https://doi.org/10.1016/0022-2313(92)90234-Z

U. Philipose, S. Yang, T. Xu, H.E. Ruda. Origin of the red luminescence band in photoluminescence spectra of ZnSe nanowires. Appl. Phys. Lett. 90, 063103 (2007).

https://doi.org/10.1063/1.2457190

V. Ryzhikov, B. Grinyov, S. Galkin, N. Starzhinskiy, I. Rybalka. Growing technology and luminescent characteristics of ZnSe doped crystals. J. Cryst. Growth 364, 111 (2013).

https://doi.org/10.1016/j.jcrysgro.2012.11.034

K. Katrunov, V. Ryzhikov, V. Gavrilyuk, S. Naydenov, O. Lysetska, V. Litichevskyi. Optimum design calculations for detectors based on ZnSe(Te, O) scintillators. Nucl. Instrum. Methods A 712, 126 (2013).

https://doi.org/10.1016/j.nima.2013.01.065

V.M. Koshkin, A.Ya. Dulfan, V.D. Ryzhikov, L.P. Gal'-chinetskii, N.G. Starzhinskiyet. Thermodynamics of isovalent tellurium substitution for selenium in ZnSe semiconductors. Funct. Mater. 8, 708 (2001).

L.V. Atroschenko, L.P. Gal'chinetskii, S.N. Galkin et al. Structure defects and phase transition in telluriumdoped ZnSe crystals. J. Cryst. Growth 197, 475 (1999).

https://doi.org/10.1016/S0022-0248(98)00964-6

Woo Gyo Lee, Yong Kyun Kim, Jong Kyung Kim, N. Starzhinskiy, V. Ryzhikov, B. Grinyov. Properties of ZnSe:Te,O crystals grown by Bridgman-Stockbarger method. J. Nucl. Sci. Technol. 45, 579 (2008).

https://doi.org/10.1080/00223131.2008.10875921

J. Mickevicius, G. Tamulaitis, P. Vitta, A. Zukauskas, N. Starzhinskiy, V. Ryzhikov. Characterization of ZnSe(Te) scintillators by frequency domain luminescence lifetime measurements. Nucl. Instrum. Methods A 610, 321 (2009).

https://doi.org/10.1016/j.nima.2009.05.093

M. Alizadeh, V.Ya. Degoda. The spectra of X-ray and photoluminescence of high-resistance crystals of ZnSe. Ukr. J. Phys. 63, 557 (2018).

https://doi.org/10.15407/ujpe63.6.557

M.V. Fok. Separation of Complex Spectra into Individual Bands Using the Generalized Alentsev Method (Trudy FIAN SSSR, 1972) (in Russian).

M.S. Brodyn, V.Ya. Degoda, N.Yu. Pavlova, G.P. Podust, Ya.P. Kogut, M. Alizadeh, B.V. Kozhushko. The components of 630-nm band in ZnSe and their recombination mechanisms, Optik 208, 164139 (2020).

https://doi.org/10.1016/j.ijleo.2019.164139

A.F. Lubchenko. Quantum Transitions in Impurity Centers of Solids (Naukova Dumka, 1978) (in Russian).

V.Ya. Degoda, M. Alizadeh, N.O. Kovalenko, N.Yu. Pavlova. The dependencies of X-ray conductivity and X-ray luminescence of ZnSe crystals on the excitation intensity. Adv. Condens. Matter Phys. 2018, 1515978 (2018).

https://doi.org/10.1155/2018/1515978

V.Ya. Degoda, M. Alizadeh, Ya.P. Kogut, N.Yu. Pavlova, S.V. Sulima. The influence of UV excitation intensity on photoconductivity and photoluminescence in ZnSe monocrystals. J. Luminesc. 205, 540 (2019).

https://doi.org/10.1016/j.jlumin.2018.09.051

M.V. Fok. Introduction to Luminescence Kinetics of Crystallophosphors (Nauka, 1964) (in Russian).

V.V. Antonov-Romanovskii. Photoluminescence Kinetics of Crystallophosphors (Nauka, 1966) (in Russian).

R.H. Bube. Photoconductivity of Solids (John Wiley and Sons, 1960).

A. Rose. Concepts in Photoconductivity and Allied Problems (Interscience Publishers, 1963).

S.M. Ryvkin. Photoelectric Effects in Semiconductors (Consultants Bureau, 1964).

V.Ya. Degoda, A.F. Gumenyuk, Yu.A. Marazuev. Kinetics of Recombination Luminescence and Conductivity of Crystallophosphors (Kyiv Nat. Univ. Publ. House, 2016) (in Ukrainian).

V.Ya. Degoda, M. Alizadeh. Parameters of charge carrier traps in ZnSe. Ukr. J. Phys. 64, 300 (2019).

https://doi.org/10.15407/ujpe64.4.300

M. Alizadeh, V.Y. Degoda, G.P. Podust, N.Y. Pavlova. Observation of the kinetic buildup of x-ray conduction current in ZnSe crystals. J. Appl. Phys. 128, 015702 (2020).

https://doi.org/10.1063/5.0003306

V.Ya. Degoda, M. Alizadeh, N.O. Kovalenko, N.Yu. Pavlova V-I characteristics of X-ray conductivity and UV photoconductivity of ZnSe crystals, J. Appl. Phys. 123, 075702 (2018).

https://doi.org/10.1063/1.5012597

Published

2022-02-11

How to Cite

Degoda, V., Brodyn, M., Alizadeh, M., Podust, G., Pavlova, N., & Kozhushko, B. (2022). Dipole-Center in ZnSe Crystals. Ukrainian Journal of Physics, 67(1), 62. https://doi.org/10.15407/ujpe67.1.62

Issue

Section

Semiconductors and dielectrics