Structural Characterization and Gas Sensing Properties of Nano-Sized Tin Dioxide Material Synthesized from Tin(II) Sulfate

Authors

  • E. Ovodok Research Institute for Physical-Chemical Problems of the Belarusian State University
  • M. Ivanovskaya Research Institute for Physical-Chemical Problems of the Belarusian State University
  • D. Kotsikau Belarusian State University
  • V. Kormosh Research Institute of Analytical Technique of Uzhhorod National University
  • P. Pylyp Department of Applied Physics, Uzhhorod National University
  • V. Bilanych Department of Applied Physics, Uzhhorod National University

DOI:

https://doi.org/10.15407/ujpe66.9.803

Keywords:

SnO2, SnSO4, FTIR spectroscopy, thick-film sensor, CO, CH4

Abstract

Structural features, surface condition, and gas-sensing properties of the nanocrystalline SnO2 powders synthesized from SnSO4 precursor by different methods have been studied. XRD, TEM, BET, and FTIR methods were used for the samples characterization. The gas sensors were fabricated by the thick-film technology from the synthesized SnO2 powders. The responses of the sensors toward CO and CH4 gases are measured. It is revealed that the preoxidation of SnSO4 powder with concentrated sulfuric acid before the hydrolysis results in the lower particle size, higher surface area, improved adsorption activity, and higher sensitivity to reducing gases (CO, CH4) of the synthesized SnO2 materials, than in the case of the SnO2 materials obtained without the preoxidation stage.

References

M. Batzill, U. Diebold. The surface and materials science of tin oxide. Prog. Surf. Sci. 79, 45 (2005).

https://doi.org/10.1016/j.progsurf.2005.09.002

W. G¨opel, K.D. Schierbaum. SnO2 sensors: current status and future prospects. Sens. Actuator B Chem. 26, 1 (1995).

https://doi.org/10.1016/0925-4005(94)01546-T

D. Kohl. Surface processes in the detection of reducing gases with SnO2-based devices. Sens. Actuator. 18, 71 (1989).

https://doi.org/10.1016/0250-6874(89)87026-X

G. Martinelli, M. C. Carotta. Thick-film gas sensors. Sens. Actuator B Chem. 23, 157 (1995).

https://doi.org/10.1016/0925-4005(95)01267-2

S.P. Patil, V.L. Patil, S.S. Shendage, N.S. Harale, S.A. Vanalakar, J.H. Kim, P.S. Patil. Spray pyrolyzed indium oxide thick films as NO2 gas sensor. Ceram. Int. 42, 16160 (2016).

https://doi.org/10.1016/j.ceramint.2016.07.135

D.C. Pugh, S.M. Hailes, I.P. Parkin. A gas-sensing array produced from screen-printed, zeolite-modified chromium titanate. Meas. Sci. Technol. 26, 085102 (2015).

https://doi.org/10.1088/0957-0233/26/8/085102

N. Yamazoe. New approaches for improving semiconductor gas sensors. Sens. Actuator B Chem. 5, 7 (1991).

https://doi.org/10.1016/0925-4005(91)80213-4

C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Grain size effects on gas sensitivity of porous SnO2-based elements. Sens. Actuator B Chem. 3, 147 (1991).

https://doi.org/10.1016/0925-4005(91)80207-Z

S.M. Badalyan, M.N. Rumyantseva, S.A. Nikolaev, A.V. Marikutsa, V.V. Smirnov, A.S. Alikhanian, A.M. Gaskov. Effect of Au and NiO catalysts on the NO2 sensing properties of nanocrystalline SnO2, Inorg. Mater. 46, 232 (2010).

https://doi.org/10.1134/S0020168510030040

D. Wang, Y. Chen, Z. Liu, L. Li, C. Shi, H. Qin, J. Hu. CO2-sensing properties and mechanism of nano-SnO2 thick-film sensor. Sens. Actuator B Chem. 227, 73 (2016).

https://doi.org/10.1016/j.snb.2015.12.025

K. Suematsu, K. Yamada, M. Yuasa, T. Kida, K. Shimanoe. Evaluation of Oxygen Adsorption Based on the Electric Properties of SnO2 Semiconductor Gas Sensors. Sensor. Mater. 28, 1211 (2016).

https://doi.org/10.18494/SAM.2016.1415

G.W. Wang, H. Hattori, K. Tanabe. The enhancement of acid strength and catalytic activity of SnO2 by the addition of sulfate ion. Chem. Lett. 12, 277 (1983). https://doi.org/10.1246/cl.1983.277

H.C. Chiu, C.S. Yeh. Hydrothermal synthesis of SnO2 nanoparticles and their gas-sensing of alcohol. J. Phys. Chem. B 111, 7256 (2007). https://doi.org/10.1021/jp0688355

K. Arata, M. Hino. Preparation of superacids by metal oxides and their catalytic action. Mater. Chem. Phys. 26, 213 (1990). https://doi.org/10.1016/0254-0584(90)90012-Y

M. Takano, Y. Bando, N. Nakanishi, M. Sakai, H. Okinaka. Characterization of fine particles of the a-Fe2O3-SnO2 system with residual SO2−4 ions on the surface. J. Solid State Chem. 68, 153 (1987). https://doi.org/10.1016/0022-4596(87)90298-2

A.A. Bolzan, C. Fong, B.J. Kennedy, C.J. Howard. Structural studies of rutile-type metal dioxides. Acta Crystallogr. Sect. B 53, 373 (1997). https://doi.org/10.1107/S0108768197001468

K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds (John Wiley & Sons, Ltd. 1986).

L.M. Kustov, V.B. Kazansky, F. Figueras, D. Tichit. Investigation of the acidic properties of ZrO2 modified by SO2−4 anions. J. Catal. 150, 143 (1994). https://doi.org/10.1006/jcat.1994.1330

Downloads

Published

2021-10-04

How to Cite

Ovodok, E., Ivanovskaya, M., Kotsikau, D., Kormosh, V., Pylyp, P., & Bilanych, V. (2021). Structural Characterization and Gas Sensing Properties of Nano-Sized Tin Dioxide Material Synthesized from Tin(II) Sulfate. Ukrainian Journal of Physics, 66(9), 803. https://doi.org/10.15407/ujpe66.9.803

Issue

Section

Semiconductors and dielectrics