Qualitative Analysis of the Clustering in Water Solutions of Alcohols III

Authors

  • V.E. Chechko I.I. Mechnikov National University of Odesa, Research and Development Institute of Physics

DOI:

https://doi.org/10.15407/ujpe66.10.865

Keywords:

solutions, water, monohydric alcohols, elementary clusters, special point

Abstract

Peculiarities of the clustering in aqueous solutions of monohydric alcohols have been discussed. The main attention is focused on the details of clustering in aqueous solutions of four first alcohols in the methanol homologous series, as well as butanol isomers. The volume of an elementary cluster is assumed to be smaller than the total volume of the components forming this cluster. The clustering degree is determined at a temperature of 15 C and in the concentration interval 0 < x < xp, where xp is the molar concentration of alcohol molecules at the special point. The clustering degree for the aqueous solutions of butanol isomers at 20 C is estimated as well.

References

D.I. Mendeleev. Solutions (Izd. Akad. Nauk SSSR, 1956) (in Russian).

G. Landesen. Investigations of Thermal Expansion of Aqueous Solutions (K. Mattisen's Printing Office, 1905) (in Russian).

A. Ladenburg. Lectures on the History of the Development of Chemistry From Lavoisier to Our Time: With the Addition of an Essay on the History of Chemistry in Russia by Acad. P. I. Walden (MATHESIS, 1917) (in Russian).

C. Sanchez, M. Aguilar, O. Pizio. On the apparent molar volume of methanol in water-methanol mixtures. Composition and temperature effects from molecular dynamics study. Condens. Matter Phys. 23, 34601 (2020).

https://doi.org/10.5488/CMP.23.34601

G.C. Benson, O. Kiyohara. Thermodynamics of mixtures of nonelectrolytes. I. Excess volumes of water-alcohol mixtures at several temperatures. J. Sol. Chem. 9, No. 10, 791 (1980).

https://doi.org/10.1007/BF00646798

N.P. Malomuzh, E.L. Slinchak. The cluster structure of dilute aqueous-alcoholic solutions and molecular light scattering in them. Russ. J. Phys. Chem. A. 81, 1777 (2007).

https://doi.org/10.1134/S0036024407110106

N. Nishi, K. Koga, C. Ohshima, K. Yamamoto, U. Nagashima, K. Nagami. Molecular association in ethanolwater mixtures studied by mass spectrometric analysis of clusters generated through adiabatic expansion of liquid jets. J. Am. Chem. Soc. 110, 5246 (1988).

https://doi.org/10.1021/ja00224a002

V.E. Chechko, V.Ya. Gotsulskyi. Qualitative analysis of clustering in aqueous alcohol solutions. Ukr. J. Phys. 63, 521 (2018).

https://doi.org/10.15407/ujpe63.6.521

V.E. Chechko, V.Ya. Gotsulskyi, T.V. Diieva. Qualitative analysis of clustering in aqueous alcohol solutions II. Ukr. J. Phys. 64, 143 (2019).

https://doi.org/10.15407/ujpe64.2.143

V.E. Chechko, V.Ya. Gotsulsky, M.P. Malomuzh. Peculiar points in the phase diagram of the water-alcohol solutions. Condens. Matter Phys. 16, 23006 (2013).

https://doi.org/10.5488/CMP.16.23006

V.Ya. Gotsulskiy, N.P. Malomuzh, V.E. Chechko. Particular points of water-alcohol solutions. Russ. J. Phys. Chem. A 89, 207 (2015).

https://doi.org/10.1134/S0036024415020119

V.Ya. Gotsul'skii, N.P. Malomuzh, M.V. Timofeev, V.E. Chechko. Contraction of aqueous solutions of monoatomic alcohols. Russ. J. Phys. Chem. A 89, 51 (2015).

https://doi.org/10.1134/S0036024415010070

V.Ya. Gotsul'skii, N.P. Malomuzh, V.E. Chechko. Features

of the temperature and concentration dependences of the

contraction of aqueous solutions of ethanol. Russ. J. Phys.

Chem. A 87, 1638 (2013).

https://doi.org/10.1134/S0036024413100087

I. Langmuir. The distribution and orientation of molecules.

Colloid Symp. Monograph 3, 48 (1925).

N.A. Smirnova. Molecular Theories of Solutions (Khimiya,

(in Russian).

N. Micali, S. Trusso, C. Vasi, D. Blaudez, F. Mallamace.

Dynamical properties of water-methanol solutions studied

by depolarized Rayleigh scattering. Phys. Rev. E 54, 1720

(1996).

Y. Zhong, G.L. Warren, S. Patel. Thermodynamic and

structural properties of methanol-water solutions using

nonadditive interaction models. J. Comput. Chem. 29, 142

(2008).

A. Geiger, F.H. Stillinger, A. Rahman. Aspects of the

percolation process for hydrogen-bond networks in water.

J. Chem. Phys. 70, 4185 (1979).

L. Dougan, S.P. Bates, R. Hargreaves, J.P. Fox, J. Crain,

J.L. Finney, V. Reat, A.K. Soper. Methanol-water solutions: A bi-percolating liquid mixture. J. Chem. Phys.

, 6456 (2004).

M. Ageno, C. Frontali. Viscosity measurements of alcoholwater mixtures and the structure of water. Proc. Nat.

Acad. Sci. USA 54, 856 (1967).

https://doi.org/10.1002/j.1537-2197.1967.tb10709.x

M.N. Buslaeva, O.Ya. Samoilov. Thermochemical research

of the stabilization of water structure by non-electrolyte

molecules. Zh. Strukt. Khim. 4, 502 (1963) (in Russian).

O. Redlich, A.T. Kister. Thermodynamics of nonelectrolyte solutions-x-y-t relations in a binary system. Ind. Eng.

Chem. 40, 341 (1948).

https://doi.org/10.1001/archopht.1948.00900030347013

O. Redlich, A.T. Kister. Algebraic representation of thermodynamic properties and the classification of solutions.

Industr. Eng. Chem. 40, 345 (1948).

https://doi.org/10.1021/ie50458a036

L.A. Bulavin, V.Y. Gotsul'skii, N.P. Malomuzh, V.E. Chechko. Relaxation and equilibrium properties of dilute aqueous solutions of alcohols. Russ. Chem. Bull. 65, 851 (2016).

https://doi.org/10.1007/s11172-016-1391-2

I'M IN. Zeltser. Mixing heat of ethanol-water solutions. Ferment. Spirt. Promyshl. 4, 11 (1966).

D.D. Grinshpan, I.I. Lishtvan, A.A. Matveev. Associates and azeotrope of water with ethanol. Vests. Nats. Akad. Navuk Belarusi 4, 41 (2012) (in Russian).

Y.B. Monakhova, T.M. Varlamova, S.P. Mushtakova, E.M. Rubtsova. Association in solutions of monoatomic alcohols and their mixtures with water. Russ. J. Phys. Chem. A 86, 380 (2012).

https://doi.org/10.1134/S0036024412030223

T. Fukasawa, Y. Tominaga, A. Wakisaka. Molecular association in binary mixtures of tert-butyl alcohol-water and tetrahydrofuran-heavy water studied by mass spectrometry of clusters from liquid droplets. J. Phys. Chem. A 108, 59 (2004).

https://doi.org/10.1021/jp031011s

G.G. Malenkov. Geometrical aspect of the stabilization of the structure of water by nonelectrolyte molecules. J. Struct. Chem. 7, 321 (1966).

https://doi.org/10.1007/BF00744418

I.N. Kochnev. Bulk effects in alcohol-aqueous solutions Mol. Fiz. Biofiz Vodn. Sist. N 1, 19 (1973) (in Russian).

CRC Handbook of Chemistry and Physics. (CRC Press, 1962).

Tables for Determining the Content of Ethyl Alcohol in Water-Alcohol Solutions (Izd. Standartov, 1972) (in Russian).

C. Dethlefsen, P.G. Sørensen, A. Hvidt. Excess volumes of propanol-water mixtures at 5, 15, and 25 ∘C. J. Solut. Chem. 13, 191 (1984).

https://doi.org/10.1007/BF00645877

A.F. Cristino, L.C.S. Nobre, F.E.B. Bioucas, A.F.S. Santos, A.N. de Castro, I.M.S. Lampreia. Volumetric and sound speed study of aqueous 1-butanol liquid mixtures at different temperatures. J. Chem. Thermodyn. 134, 127 (2019).

https://doi.org/10.1016/j.jct.2019.03.006

K. Kinoshita, H. Ishikawa, K. Shinoda. Solubility of alcohols in water determined the surface tension measurements. Bull. Chem. Soc. Japan 31, 1081 (1958).

https://doi.org/10.1246/bcsj.31.1081

Solubility Data Series. Alcohols With Water, edited by A.F.M. Barton. (Pergamon Press, 1984).

R. Stephenson, J. Stuart, M. Tabak. Mutual solubility of water and aliphatic alcohols. J. Chem. Eng. Data 29, 287 (1984).

https://doi.org/10.1021/je00037a019

C.L. Yaws, J.R. Hopper, S.D. Sheth, M. Han, R.W. Pike. Solubility and Henry's law constant for alcohols in water. Waste Manag. 17, 541 (1998).

https://doi.org/10.1016/S0956-053X(97)10057-5

F. Franks, H. T. Smith. Precision densities of dilute aqueous solutions of the isomeric butanols. J. Chem. Eng. Data 13, 538 (1968).

https://doi.org/10.1021/je60039a026

S.L. Outcalt, A. Laesecke, T.J. Fortin. Density and speed of sound measurements of 1- and 2-butanol. J. Mol. Liq. 151, 50 (2010).

https://doi.org/10.1016/j.molliq.2009.11.002

A. Hvidt, R. Moss, G. Nielsen. Volume properties of aqueous solutions of tert-butyl alcohol at temperatures between 5 and 25 ∘C. Acta Chem. Scandinavica B 32, 274 (1978).

https://doi.org/10.3891/acta.chem.scand.32b-0274

P.K. Kipkemboi, A.J. Easteal. Densities and viscosities of binary aqueous mixtures of nonelectrolytes: tert-Butyl alcohol and tert-butylamine. Can. J. Chem. 79, 1937 (1994).

https://doi.org/10.1139/v94-247

Fong-Meng Pang, Chye-Eng Seng, Tjoon-Tow Teng, M.H. Ibrahim. Densities and viscosities of aqueous solutions of 1-propanol and 2-propanol at temperatures from 293.15 K to 333.15 K. J. Mol. Liq. 136, 71 (2007).

https://doi.org/10.1016/j.molliq.2007.01.003

M. Chauhdry, J. Lamb. Excess volumes of (2-butanol + water) at pressures up to 220 MPa. J. Chem. Thermodyn. 18, 665 (1986).

https://doi.org/10.1016/0021-9614(86)90069-8

Y.-H. Pai, L.-J. Chen. Viscosity and density of dilute aqueous solutions of 1-pentanol and 2-methyl-2-butanol. J. Chem. Eng. Data 43, 665 (1998).

https://doi.org/10.1021/je980034a

K. Zem'enkova, D. Gonz'alez-Salgado, E. Lomba, L. Romani. Temperature of maximum density for aqueous mixtures of three pentanol isomers. J. Chem. Thermodyn. 113, 369 (2017).

https://doi.org/10.1016/j.jct.2017.07.011

Published

2021-11-01

How to Cite

Chechko, V. (2021). Qualitative Analysis of the Clustering in Water Solutions of Alcohols III. Ukrainian Journal of Physics, 66(10), 865. https://doi.org/10.15407/ujpe66.10.865

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics