High-Pressure Reorganization of the Fractal Pore Structure in Detonation Nanodiamond Powders

Authors

  • L.A. Bulavin Taras Shevchenko National University of Kyiv, Faculty of Physics
  • O.V. Tomchuk Taras Shevchenko National University of Kyiv, Faculty of Physics, Joint Institute for Nuclear Research, Institute of Environmental Geochemistry, Nat. Acad. of Sci. of Ukraine
  • A.V. Nagornyi Taras Shevchenko National University of Kyiv, Faculty of Physics, Joint Institute for Nuclear Research, Institute of Environmental Geochemistry, Nat. Acad. of Sci. of Ukraine
  • D.V. Soloviov Joint Institute for Nuclear Research, Institute for Safety Problems of Nuclear Power Plants, Nat. Acad. of Sci. of Ukraine, Moscow Institute of Physics and Technology

DOI:

https://doi.org/10.15407/ujpe66.7.635

Keywords:

detonation nanodiamonds, porosity, fractal clusters, high pressure, small-angle neutron scattering, X-ray diffraction analysis

Abstract

Diamond nanoparticles have significant prospects for technological applications, so their manufacture and subsequent disaggregation are a challenging task. In this paper, the porous structure of aggregates in detonation nanodiamond powders has been analyzed using small-angle neutron scattering. The influence of high pressure allowed the contributions to the small-angle scattering from micro- and nano-sized pores to be separated. The type of fractal clusters formed by nanopores was determined. The possibility of a partial mechanical disaggregation of nanodiamond particles at a pressure of 1.5 GPa is confirmed.

References

O.A. Shenderova, V.V. Zhirnov, D.W. Brenner. Carbon nanostructures. Crit. Rev. Solid State Mater. Sci. 27, 227 (2002). https://doi.org/10.1080/10408430208500497

O.V. Tomchuk, M.V. Avdeev, A.T. Dideikin et al. Revealing the structure of composite nanodiamond-graphene oxide aqueous dispersions by small-angle scattering. Diamond Relat. Mater. 103, 107670 (2020). https://doi.org/10.1016/j.diamond.2019.107670

E. Osawa. Monodisperse single nanodiamond particulates. Pure Appl. Chem. 80, 1365 (2008). https://doi.org/10.1351/pac200880071365

V.N. Mochalin, O. Shenderova, D. Ho et al. The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11 (2012). https://doi.org/10.1038/nnano.2011.209

O. Tomchuk, V. Ryukhtin, O. Ivankov et al. SANS analysis of aqueous dispersions of Eu- and Gd-grafted nanodiamond particles. Fuller. Nanotub. Carbon Nanostr. 28, 272 (2020). https://doi.org/10.1080/1536383X.2019.1697686

O.V. Tomchuk, L.A. Bulavin, V.L. Aksenov et al. Small-angle scattering in structural research of nanodiamond dispersions. In: Modern Problems of the Physics of Liquid Systems. Selected Reviews from the 8th International Conference "Physics of Liquid Matter: Modern Problems", May 18-22, 2018, Kyiv, Ukraine. Edited by L.A. Bulavin, L. Xu (Springer, 2019), p. 201.

https://doi.org/10.1007/978-3-030-21755-6_8

A. Kruger, F. Kataoka, M. Ozawa et al. Unusually tight aggregation in detonation nanodiamond: Identifi cation and disintegration. Carbon 43, 1722 (2005).

https://doi.org/10.1016/j.carbon.2005.02.020

A.T. Dideikin, A.E. Aleksenskii, M.V. Baidakova et al. Rehybridization of carbon on facets of detonation diamond nanocrystals and forming hydrosols of individual particles. Carbon 122, 737 (2017).

https://doi.org/10.1016/j.carbon.2017.07.013

M.V. Avdeev, V.L. Aksenov, L. Rosta. Pressure induced changes in fractal structure of detonation nanodiamond

powder by small-angle neutron scattering. Diamond Relat. Mater. 16, 2050 (2007).

https://doi.org/10.1016/j.diamond.2007.07.023

O.A. Kyzyma, A.V. Tomchuk, M.V. Avdeev et al. Structural researches of carbonic fluid nanosystems. Ukr. J. Phys. 60, 835 (2015).

https://doi.org/10.15407/ujpe60.09.0835

B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman, 1982).

O.V. Tomchuk. The concept of fractals in the structural analysis of nanosystems: A retrospective look and prospects. Ukr. J. Phys. 65, 703 (2020).

https://doi.org/10.15407/ujpe65.8.709

A.I. Kuklin, A.V. Rogachev, D.V. Soloviov et al., Neutronographic investigations of supramolecular structures on upgraded small-angle spectrometer YuMO. J. Phys.: Conf. Ser. 848, 012010 (2017).

https://doi.org/10.1088/1742-6596/848/1/012010

P. Scardi, M. Leoni. Diff raction line profi les from polydisperse crystalline systems. Acta Crystallogr. A 57, 604 (2001).

https://doi.org/10.1107/S0108767301008881

O.V. Tomchuk, L.A. Bulavin, V.L. Aksenov et al. Small-angle scattering from polydisperse particles with a diffusive surface. J. Appl. Cryst. 47, 642 (2014).

https://doi.org/10.1107/S1600576714001216

G. Beaucage. Approximations leading to a unified exponential/power-law approach to small-angle scattering. J. Appl. Cryst. 28, 717 (1995).

https://doi.org/10.1107/S0021889895005292

M.V. Avdeev, N.N. Rozhkova, V.L. Aksenov et al. Aggregate structure in concentrated liquid dispersions of ultrananocrystalline diamond by small-angle neutron scattering. J. Phys. Chem. C 113, 9473 (2009).

https://doi.org/10.1021/jp900424p

O.V. Tomchuk, M.V. Avdeev, A.E. Aleksenskii et al. Sol-gel transition in nanodiamond aqueous dispersions by small-angle scattering. J. Phys. Chem. C 123, 18028 (2019).

https://doi.org/10.1021/acs.jpcc.9b03175

M.V. Avdeev, V.L. Aksenov, O.V. Tomchuk et al. The spatial diamond-graphite transition in detonation nanodiamond as revealed by small-angle neutron scattering. J.Phys.: Cond. Matt. 25, 445001 (2013). https://doi.org/10.1088/0953-8984/25/44/445001

C.M. Sorensen. Light scattering by fractal aggregates: A review. Aerosol Sci. Technol. 35, 648 (2001). https://doi.org/10.1080/02786820117868

O.V. Tomchuk. Some aspects of small-angle scattering by fractal chains. AIP Conf. Proc. 2163, 020006 (2019). https://doi.org/10.1063/1.5130085

O.V. Tomchuk, M.V. Avdeev, L.A. Bulavin. About the size cut-off effect on small-angle scattering by stochastic mass fractals. J. Surf. Invest. 14, S231 (2020). https://doi.org/10.1134/S1027451020070484

O.V. Tomchuk, M.V. Avdeev, V.L. Aksenov et al. Temperature-dependent fractal structure of particle clusters in aqueous ferrofluids by small-angle scattering. Colloids Surf. A 613, 126090 (2021). https://doi.org/10.1016/j.colsurfa.2020.126090

T. Freltoft, J.K. Kjems, S.K. Sinha. Power-law correlations and finite-size effects in silica particle aggregates studied by small-angle neutron scattering. Phys. Rev. B 33, 269 (1986). https://doi.org/10.1103/PhysRevB.33.269

Published

2021-08-04

How to Cite

Bulavin, L., Tomchuk, O., Nagornyi, A., & Soloviov, D. (2021). High-Pressure Reorganization of the Fractal Pore Structure in Detonation Nanodiamond Powders. Ukrainian Journal of Physics, 66(7), 635. https://doi.org/10.15407/ujpe66.7.635

Issue

Section

Structure of materials

Most read articles by the same author(s)

<< < 1 2 3 4