Two-Dimensional Pauli Equation in Noncommutative Phase-Space

Authors

  • I. Haouam Laboratoire de Physique Mathematique et de Physique Subatomique (LPMPS), Universite Freres Mentouri

DOI:

https://doi.org/10.15407/ujpe66.9.771

Keywords:

noncommutative phase-space, Pauli equation, Bopp-shift, semiclassical partition function, thermodynamic properties

Abstract

We study the Pauli equation in a two-dimensional noncommutative phase-space by considering a constant magnetic field perpendicular to the plane. The noncommutative problem is related to the equivalent commutative one through a set of two-dimensional Bopp-shift transformations. The energy spectrum and the wave function of the two-dimensional noncommutative Pauli equation are found, where the problem in question has been mapped to the Landau problem. In the classical limit, we have derived the noncommutative semiclassical partition function for one- and N- particle systems. The thermodynamic properties such as the Helmholtz free energy, mean energy, specific heat and entropy in noncommutative and commutative phasespaces are determined. The impact of the phase-space noncommutativity on the Pauli system is successfully examined.

References

A.D. Martino, L. Dell'Anna, R. Egger. Magnetic confinement of massless Dirac fermions in graphene. Phys. Rev. Lett. 98, 066802 (2007).

https://doi.org/10.1103/PhysRevLett.98.066802

K. Novoselov, A. Geim, S. Morozov et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005).

https://doi.org/10.1038/nature04233

V. Arjona, E.V. Castro, M.A.H. Vozmediano. Collapse of Landau levels in Weyl semimetals. Phys. Rev. B 96, 081110 (R) (2017).

https://doi.org/10.1103/PhysRevB.96.081110

Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201 (2005).

https://doi.org/10.1038/nature04235

K. Bolotin, F. Ghahari, M.D. Shulman, H.L. Stormer, P. Kim. Observation of the fractional quantum Hall effect in graphene. Nature 462, 196 (2009).

https://doi.org/10.1038/nature08582

F.M. Andrade, E.O. Silva, M.M. Ferreira, jr, E.C. Rodrigues. On the к-Dirac oscillator revisited. Phys. Lett. B 731, 327 (2014).

https://doi.org/10.1016/j.physletb.2014.02.054

N. Seiberg, E. Witten. String theory and noncommutative geometry. J. High. Energy. Phys. 9, 032 (1999).

https://doi.org/10.1088/1126-6708/1999/09/032

D.M. Gingrich. Noncommutative geometry inspired black holes in higher dimensions at the LHC. J. High. Energ. Phys. 2010, 022 (2010).

https://doi.org/10.1007/JHEP05(2010)022

J.M. Gracia-Bondia. Notes on Quantum Gravity and Noncommutative Geometry. Lect. Notes. Phys. 807, 3 (2010).

https://doi.org/10.1007/978-3-642-11897-5_1

P. Nicolini. Noncommutative black holes, the final appeal to quantum gravity: A review. Int. J. Mod. Phys. A 24, 1229 (2009).

https://doi.org/10.1142/S0217751X09043353

I. Haouam. On the Fisk-Tait equation for spin-3/2 fermions interacting with an external magnetic field in noncommutative space-time. J. Phys. Stud. 24, 1801 (2020).

https://doi.org/10.30970/jps.24.1801

R.J. Szabo. Quantum field theory on noncommutative spaces. Phys. Rep. 378, 207 (2003).

https://doi.org/10.1016/S0370-1573(03)00059-0

I. Haouam. Analytical solution of (2 + 1) dimensional Dirac equation in time-dependent noncommutative phase-space. Acta Polytech. 60, 111 (2020).

https://doi.org/10.14311/AP.2020.60.0111

I. Haouam. On the noncommutative geometry in quantum mechanics. J. Phys. Stud. 24, 2002 (2020).

https://doi.org/10.30970/jps.24.2002

I. Haouam. The non-relativistic limit of the DKP equation in non-commutative phase-space. Symmetry. 11, 223 (2019).

https://doi.org/10.3390/sym11020223

T. Harko, S. Liang. Energy-dependent noncommutative quantum mechanics. Eur. Phys. J. C 79, 300 (2019).

https://doi.org/10.1140/epjc/s10052-019-6794-4

O. Bertolami, J.G. Rosa, C.M.L. De Aragao, P. Castorina, D. Zappala. Noncommutative gravitational quantum well. Phys. Rev. D 72, 025010 (2005).

https://doi.org/10.1103/PhysRevD.72.025010

P.M. Ho, H.C. Kao. Noncommutative quantum mechanics from noncommutative quantum field theory. Phys. Rev. Lett. 88, 151602 (2002).

https://doi.org/10.1103/PhysRevLett.88.151602

A. Stern. Noncommutative point sources. Phys. Rev. Lett. 100, 061601 (2008).

https://doi.org/10.1103/PhysRevLett.100.061601

A. Saha, S. Gangopadhyay, S. Saha. Noncommutative quantum mechanics of a harmonic oscillator under linearized gravitational waves. Phys. Rev. D 83, 025004 (2011).

https://doi.org/10.1103/PhysRevD.83.025004

I. Haouam, L. Chetouani. The Foldy-Wouthuysen transformation of the Dirac equation in noncommutative phasespace. J. Mod. Phys. 9, 2021 (2018).

https://doi.org/10.4236/jmp.2018.911127

W. Greiner. Quantum Mechanics: An Introduction (Springer, 2001) [ISBN: 978-3-540-67458-0].

M. Chaichian, M.M. Sheikh-Jabbari, A. Tureanu. Hydrogen atom spectrum and the Lamb shift in noncommutative QED. Phys. Rev. Lett. 86, 2716 (2001).

https://doi.org/10.1103/PhysRevLett.86.2716

A. Halder, S. Gangopadhyay. Pauli equation on noncommutative plane and the Seiberg-Witten map. Mod. Phys. Lett. A 31, 1650087 (2016).

https://doi.org/10.1142/S0217732316500875

A. Khare, J. Maharana. Supersymmetric quantum mechanics in one, two and three dimensions. Nucl. Phys. B 244, 409 (1984). https://doi.org/10.1016/0550-3213(84)90321-3

R.K. Singh. On the classical dynamics of charged particle in special class of spatially non-uniform magnetic field. Indian. J. Phys. 93, 503 (2019). https://doi.org/10.1007/s12648-018-1316-z

I. Haouam. On the three-dimensional Pauli equation in noncommutative phase-space. Acta Polytech. 61, 230 (2021). https://doi.org/10.14311/AP.2021.61.0230

M. Najafizadeh, S. Mehdi. Thermodynamics of classical systems on noncommutative phase space. Chin. J. Phys. 51, 94 (2013).

W. Gao-Feng, L. Chao-Yun, L. Zheng-Wen, Q. Shui-Jie, F. Qiang. Classical mechanics in non-commutative phase space. Chin. Phys. C 32, 338 (2008). https://doi.org/10.1088/1674-1137/32/5/002

L. Kang, N. Chamoun. Hydrogen atom spectrum in noncommutative phase space. Chin. Phys. Lett. 23, 1122 (2006). https://doi.org/10.1088/0256-307X/23/5/016

S. Biswas. Bohr-van Leeuwen theorem in non-commutative space. Phys. Lett. A 381, 3723 (2017). https://doi.org/10.1016/j.physleta.2017.10.003

Downloads

Published

2021-10-04

How to Cite

Haouam, I. (2021). Two-Dimensional Pauli Equation in Noncommutative Phase-Space. Ukrainian Journal of Physics, 66(9), 771. https://doi.org/10.15407/ujpe66.9.771

Issue

Section

General physics