Electrical Properties and Energy Parameters of Photosensi-tive n-Mn2O3/n-CdZnTe Heterostructures
DOI:
https://doi.org/10.15407/ujpe66.9.792Keywords:
thin film, spray pyrolysis, heterostructure, energy diagram, photodiodeAbstract
Conditions for the fabrication of isotype photodiode n-Mn2O3n-CdZnTe heterostructures by the spray pyrolysis of thin a-Mn2O3 bixbite films on n-CdZnTe crystalline substrates have been studied. The temperature dependences of the current-voltage (I-V) characteristics were used to analyze the mechanisms of electron tunneling through the energy barrier of the heterojunction in the forward and reverse current regimes. The role of energy states at the n-Mn2O3/n-CdZnTe interface in the formation of the barrier parameters was clarified. Based on the capacitance-voltage (C-V) characteristics, the dynamics of changes in the capacitive parameters of the Mn2O3 thin film and the n-CdZnTe inversion layer and the relation between them were established. A model for the energy diagram of the n-Mn2O3/n-CdZnTe heterojunction was presented. The photoelectric properties of the examined heterostructure were analyzed.
References
S.V. Ovsyannikov, A.M. Abakumov, A.A. Tsirlin, W. Schnelle, R. Egoavil, J. Verbeeck, G. Van Tendeloo, K.V. Glazyrin, M. Hanfland, L. Dubrovinsky. Perovskitelike Mn2O3: A path to new manganites. Angew. Chem. Int. Ed. 52, 1494 (2013).
https://doi.org/10.1002/anie.201208553
F. Hong, B. Yue, N. Hirao, Z. Liu, B. Chen. Significant improvement in Mn2O3 transition metal oxide electrical conductivity via high pressure. Sci. Rep. 7, 44078 (2017).
https://doi.org/10.1038/srep44078
M. Wang, M. Shen, L. Zhang, J. Tian, X. Jin, Y. Zhou, J. Shi. 2D-2D MnO2/g-C3N4 heterojunction photocatalyst: In-situ synthesis and enhanced CO2 reduction activity. Carbon 120, 23 (2017).
https://doi.org/10.1016/j.carbon.2017.05.024
T. Yu, Y. Sun, C. Zhe, W. Wang, P. Rao. Synthesis of synthesis of CuOx/MnO2 heterostructures with enhanced
visible light-driven photocatalytic activity. J. Mater. Sci. Chem. Eng. 5, 12 (2017).
W. Ren, D. Liu, C. Sun, X. Yao, J. Tan, C. Wang, K. Zhao, X. Wang, Q. Li, L. Mai. Nonhierarchical heterostructured Fe2O3/Mn2O3 porous hollow spheres for enhanced lithium storage. Small 14, 1800659 (2018).
https://doi.org/10.1002/smll.201800659
S. Sharma, P. Chauhan, S. Husain. Structural and optical properties of Mn2O3 nanoparticles and its gas sensing applications. Adv. Mater. Proc. 1, 220 (2016).
https://doi.org/10.5185/amp.2016/220
R. Naeem, M. Ali Ehsan, R. Yahya, M. Sohail, H. Khaledi, M. Mazhar. Fabrication of pristine Mn2O3 and Ag-Mn2O3 composite thin films by AACVD for photoelectrochemical water splitting. Dalton Trans. 45, 14928 (2016).
https://doi.org/10.1039/C6DT02656G
H.D. Awad, A.K. Elttayef, A.L. Ressen, K.A. Ali. The effect of annealing on the structural and optical properties of Mn2O3 thin film prepared by chemical spray pyrolysis. Int. J. Sci. Res. 6, 291 (2017).
https://doi.org/10.21275/ART20178429
A.L. Fahrenbruch, R.H. Bube. Fundamentals of Solar Cells (Academic Press, 1983) [ISBN: 9780323145381].
https://doi.org/10.1016/B978-0-12-247680-8.50013-X
A. Ginsburg, D.A. Keller, H.-N. Barad, K. Rietwyk, Y. Bouhadana, A. Anderson, A. Zaban. One-step synthesis of crystalline Mn2O3 thin film by ultrasonic spray pyrolysis. Thin Solid Films 615, 261 (2016).
https://doi.org/10.1016/j.tsf.2016.06.050
Q. Javed, W. Feng-Ping, M.Y. Rafique, A.M. Toufiq, M.Z. Iqbal. Canted antiferromagnetic and optical properties of nanostructures of Mn2O3 prepared by hydrothermal synthesis. Chin. Phys. B 21, 117311 (2012).
https://doi.org/10.1088/1674-1056/21/11/117311
M. Chandra, S. Yadav, S. Rayaprol, K. Singh. Structural and impedance spectroscopy of a-Mn2O3. AIP Conf. Proc. 1942, 110023 (2018).
https://doi.org/10.1063/1.5029006
A. Ramirez, P. Hillebrand, D. Stellmach, M.M. May, P. Bogdanoff, S. Fiechter. Evaluation of MnOx, Mn2O3, and Mn3O4 electrodeposited films for the oxygen evolution reaction of water. J. Phys. Chem. C 118, 14073 (2014).
https://doi.org/10.1021/jp500939d
S. Pishdadian, A.M. Shariati Ghaleno. Influences of annealing temperature on the optical and structural properties of manganese oxide thin film by Zn doping from sol-gel technique. Acta Phys. Pol. A 123, 471 (2013).
https://doi.org/10.12693/APhysPolA.123.741
I.P. Koziarskyi, E.V. Maistruk, I.G. Orletsky, M.I. Ilashchuk, D.P. Koziarskyi, P.D. Marianchuk, M.M. Solovan, K.S. Ulyanytsky. Influence of properties of hematite films on electrical characteristics of isotype heterojunctions Fe2O3/n-CdTe. Semicond. Sci. Technol. 35, 025018 (2020).
https://doi.org/10.1088/1361-6641/ab6107
V.V. Khomyak, V.V. Brus, M.I. Ilashchuk, I.G. Orletsky, I.I. Shtepliuk, G.V. Lashkarev. Fabrication and properties of the photosensitive anisotype n-CdxZn1−xO/p-CdTe heterojunctions. Acta Phys. Pol. A 126, 1163 (2014.
https://doi.org/10.12693/APhysPolA.126.1163
I.G. Orletskyi, M.I. Ilashchuk, M.M. Solovan, P.D. Maryanchuk, E.V. Maistruk, G.O. Andrushchak. Effect of fabrication conditions on charge transport and photo-response of n-ITO/p-Cd1−xZnxTe heterojunctions. Mater. Res. Express 6, 086219 (2019).
https://doi.org/10.1088/2053-1591/ab26f3
E.V. Maistruk, I.G. Orletsky, M.I. Ilashchuk, I.P. Koziarskyi, D.P. Koziarskyi, P.D. Marianchuk, O.A. Parfenyuk. Influence of heat treatment of the base material on the electrical properties of anisotyped heterojunctions n-ZnO : Al/p-CdZnTe. Semicond. Sci. Technol. 34, 045016 (2019).
https://doi.org/10.1088/1361-6641/ab0a1c
J.J. Kennedy, P.M. Amirtharaj, P.R. Boyd, S.B. Qadri, R.C. Dobbyn, G.G. Long. Growth and characterization of Cd1−xZnxTe and Hg1−yZnyTe. J. Cryst. Growth 86, 93 (1988).
https://doi.org/10.1016/0022-0248(90)90704-O
K. Guergouri, R. Triboulet, A. Tromson-Carli, Y. Marfaing. Solution hardening and dislocation density reduction in CdTe crystals by Zn addition. J. Cryst. Growth 86, 61 (1988).
https://doi.org/10.1016/0022-0248(90)90699-L
A. Ramirez, D. Friedrich, M. Kunst, S. Fiechter. Charge carrier kinetics in MnOx, Mn2O3 and Mn3O4 films for water oxidation. Chem. Phys. Lett. 568-569, 157 (2013).
https://doi.org/10.1016/j.cplett.2013.03.054
L. Jayaselvan, C.G. Sambandam, C. Ravidhas, A.M.E. Raj. Effect of preparative parameters on structural, optical and electrical properties of Mn2O3 nanoparticles prepared via microwave assisted technique. Int. J. Sci. Res. Sci.
Technol. 3, 106 (2017).
I.G. Orletskii, P.D. Mar'yanchuk, E.V. Maistruk, M.N. Solovan, V.V. Brus. Low-temperature spray pyrolysis of FeS2 films and their electrical and optical properties. Phys. Solid State 58, 37 (2016).
https://doi.org/10.1134/S1063783416010224
I.G. Orletskyi, M.I. Ilashchuk, E.V. Maistruk, M.M. Solovan, P.D. Maryanchuk, S.V. Nichyi. Electrical properties of SIS heterostructures n-SnS2/CdTeO3/p-CdZnTe. Ukr. J. Phys. 64, 164 (2019).
https://doi.org/10.15407/ujpe64.2.164
I.G. Orletskyi, M.I. Ilashchuk, M.N. Solovan, P.D. Maryanchuk, O.A. Parfenyuk, E.V. Maistruk, S.V. Nichyi. Electrical properties and energy parameters of n-FeS2/p-Cd1−xZnxTe heterojunctions. Semiconductors 52, 1171 (2018).
https://doi.org/10.1134/S1063782618090117
Y. Xi, T. Gessmann, J. Xi, J.K. Kim, J.M. Shah, E.F. Schubert, A.J. Fischer, M.H. Crawford, K.H. Bogart, A.A. Allerman. Junction temperature in ultraviolet light-emitting diodes. Jpn. J. Appl. Phys 44, 7260 (2005).
https://doi.org/10.1143/JJAP.44.7260
J.P. Ponpon. A review of ohmic and rectifying contacts on cadmium telluride. Solid-State Electron. 28, 689 (1985).
https://doi.org/10.1016/0038-1101(85)90019-X
A. Luque, S. Hegedus.Handbook of Photovoltaic Science and Engineering (Wiley, 2011) [ISBN: 978-0-470-72169-8].
https://doi.org/10.1002/9780470974704
J.J. Prias-Barragan, L. Tirado-Mejia, H. Ariza-Calderon, L. Banos, J.J. Perez-Bueno, M.E. Rodriguez. Band gap energy determination by photoacoustic absorption and optical analysis of Cd1−xZnxTe for low zinc concentrations. J. Cryst. Growth 286, 179 (2006).
https://doi.org/10.1016/j.jcrysgro.2005.09.022
J. Franc, P. Hlidek, P. Moravec, E. Belas, P. Hoschl, L. Turjanska, R. Varghova. Determination of energy gap in Cd1−xZnxTe (x = 0-0.06). Semicond. Sci. Technol. 15, 561 (2000).
https://doi.org/10.1088/0268-1242/15/6/313
S.M. Sze, K.N. Kwok. Physics of Semiconductor Devices (Wiley, 2006) [ISBN: 9780471143239].
S. Lany. Semiconducting transition metal oxides. J. Phys.: Condens. Matter. 27, 283203 (2015).
https://doi.org/10.1088/0953-8984/27/28/283203
B.L. Sharma, R.K. Purohit. Semiconductor Heterojunctions (Pergamon Press, 1974) [ISBN: 9781483280868]. https://doi.org/10.1016/B978-0-08-017747-2.50005-8
M. Chandra, S. Yadav, R.J. Choudhary, R. Rawat, A.K. Sinha, M.-B. Lepetit, K. Singh. Multiferroicity and magnetoelastic coupling in a-Mn2O3: A binary perovskite. Phys. Rev. B 98, 104427 (2018). https://doi.org/10.1103/PhysRevB.98.104427
E. Maistruk, M. Ilashchuk, I. Orletskyi, I. Koziarskyi, D. Koziarskyi, P. Maryanchuk, O. Parfenyuk, K. Ulyanytsky. Influence of the base material on the interface properties of ZnO:Al/n-CdS/p-Cd1−xZnxTe heterojunctions. Eng. Res. Express 2, 035037 (2020). https://doi.org/10.1088/2631-8695/abb7e5
A.G. Milnes, D.L. Feucht. Heterojunctions and MetalSemiconductor Junctions (Academic Press, 1972) [ISBN: 0124980503]. https://doi.org/10.1016/B978-0-12-498050-1.50009-X
S.-H. Wei, S.B. Zhang. Chemical trends of defect formation and doping limit in II-VI semiconductors: The case of CdTe. Phys. Rev. B 66, 155211 (2002). https://doi.org/10.1103/PhysRevB.66.155211
A.V. Savitsky, M.I. Ilashchuk, O.A. Parfenyuk, K.S. Ulyanytsky, V.R. Burachek, R. Ciach, Z. Swiatek, Z. Kuznicki. Thermostability of physical properties of cadmium telluride crystals. Thin Solid Films 361-362, 203 (2000). https://doi.org/10.1016/S0040-6090(99)00794-4
K. Yokota, S. Katayama, T. Yoshikawa. Termally-stimulated current in p-type CdTe annealed in various atmospheres. Jpn. J. Appl. Phys. 21, 456) (1982). https://doi.org/10.1143/JJAP.21.456
F.T.J. Smith. Electrically active point defects in cadmium telluride. J. Metallurg. Trans. 1, 617 (1970). https://doi.org/10.1007/BF02811585
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.