Comprehensive Research of 10C Nucleus Using Different Theoretical Approaches

Authors

  • M. Aygun Department of Physics, Bitlis Eren University

DOI:

https://doi.org/10.15407/ujpe66.8.653

Keywords:

nuclear potential, proximity potential, density distribution, cluster model, elastic scattering, optical model, double folding model

Abstract

We perform an extensive theoretical analysis of 10C nucleus with the use of various theoretical approaches involving the different nuclear potentials and different density distributions, as well as a simple cluster approach. We try to explain new measured and challenging experimental data on the 10C + 58Ni system at 35.3 MeV. First, we investigate the effect of thirteen different potentials. Then, we examine ten different types of density distributions for 10C nucleus. Finally, we present a simple calculation method for various cluster states of 10C, compare all the theoretical results with the experimental data, and obtain their improved agreement.

References

https://www.nndc.bnl.gov/nudat2/

https://knotplot.com/brunnian/

V. Guimar˜aes, E.N. Cardozo, V.B. Scarduelli, J. Lubian, J.J. Kolata, P.D. O'Malley, D.W. Bardayan, E.F. Aguilera, E. Martinez-Quiroz, D. Lizcano, A. Garcia-Flores, M. Febbraro, C.C. Lawrence, J. Riggins, R.O. Torres-Isea, P.N. de Faria, D.S. Monteiro, E.S. Rossi, Jr., N.N. Deshmukh. Strong coupling effect in the elastic scattering of the 10C + 58Ni system near barrier. Phys. Rev. C 100, 034603 (2019).

https://doi.org/10.1103/PhysRevC.100.034603

G.R. Satchler, W.G. Love. Folding model potentials from realistic interactions for heavy-ion scattering. Phys. Rep. 55, 183 (1979).

https://doi.org/10.1016/0370-1573(79)90081-4

S.A. Goncharov, A. Izadpanah. Nucleus-nucleus potential within the semi microscopic dispersive model on the basis of a corrected folding-model potential. Phys. Atom. Nucl. 70, 18 (2007).

https://doi.org/10.1134/S1063778807010036

M. Aygun. Alternative potentials analyzing the scattering cross sections of 7,9,10,11,12,14Be isotopes from a 12C target: Proximity potentials. J. Korean Phys. Soc. 73, 1255 (2018).

https://doi.org/10.3938/jkps.73.1255

M. Aygun. A comparison of proximity potentials in the analysis of heavy-ion elastic cross sections. Ukr. J. Phys. 63, 881 (2018).

https://doi.org/10.15407/ujpe63.10.881

M. Aygun. The application of some nuclear potentials for quasielastic scattering data of the 11Li + 28Si reaction and its consequences. Turk. J. Phys. 42, 302 (2018).

https://doi.org/10.3906/fiz-1801-5

J. Blocki, J. Randrup, W.J. Swiatecki, C.F. Tsang. Proximity forces. Ann. Phys. (NY) 105, 427 (1977).

https://doi.org/10.1016/0003-4916(77)90249-4

I. Dutt, R.K. Puri. Comparison of different proximity potentials for asymmetric colliding nuclei. Phys. Rev. C 81, 064609 (2010).

https://doi.org/10.1103/PhysRevC.81.064609

W.D. Myers, W.J. Swiatecki. Nuclear masses and deformations. Nucl. Phys. 81, 1 (1966).

https://doi.org/10.1016/0029-5582(66)90639-0

H.J. Krappe, J.R. Nix, A.J. Sierk. Unified nuclear potential for heavy-ion elastic scattering, fusion, fission, and ground-state masses and deformations. Phys. Rev. C 20, 992 (1979).

https://doi.org/10.1103/PhysRevC.20.992

R. Kumar. Effect of isospin on the fusion reaction crosssection using various nuclear proximity potentials within

the Wong model. Phys. Rev. C 84, 044613 (2011).

https://doi.org/10.1103/PhysRevB.84.085435

K. Pomorski, J. Dudek. Nuclear liquid-drop model and surface-curvature effects. Phys. Rev. C 67, 044316 (2003).

https://doi.org/10.1103/PhysRevC.67.044316

I. Dutt, R.K. Puri. Role of surface energy coefficients and nuclear surface diffuseness in the fusion of heavy-ions. Phys. Rev. C 81, 047601 (2010).

https://doi.org/10.1103/PhysRevC.81.047601

R. Gharaei, V. Zanganeh, N. Wang. Systematic study of proximity potentials for heavy-ion fusion cross sections. Nucl. Phys. A 979, 237 (2018).

https://doi.org/10.1016/j.nuclphysa.2018.09.032

W. Reisdorf. Heavy-ion reactions close to the Coulomb barrier. J. Phys. G: Nucl. Part. Phys. 20, 1297 (1994).

https://doi.org/10.1088/0954-3899/20/9/004

G.L. Zhang, Y.J. Yao, M.F. Guo, M. Pan, G.X. Zhang, X.X. Liu. Comparative studies for different proximity potentials applied to large cluster radioactivity of nuclei. Nucl. Phys. A 951, 86 (2016).

https://doi.org/10.1016/j.nuclphysa.2016.03.039

A. Winther. Dissipation, polarization and fluctuation in grazing heavy-ion collisions and the boundary to the chaotic regime. Nucl. Phys. A 594, 203 (1995).

https://doi.org/10.1016/0375-9474(95)00374-A

O. Aky¨uz, A. Winter. Proceedings of the International School of Physics "Enrico Fermi", Course LXXVII, Varenna, Italy, 1979, Ed. by R.A. Broglia, C.H. Dasso, R. Richi (North-Holland, 1981), p. 492.

R.N. Sagaidak, S.P. Tretyakova, S.V. Khlebnikov, A.A. Ogloblin, N. Rowley W.H. Trzaska. Nuclear potentials for sub-barrier fusion and cluster decay in 14C, 18O + 208Pb systems. Phys. Rev. C 76, 034605 (2007).

https://doi.org/10.1103/PhysRevC.76.034605

P.R. Christensen, A. Winther, The evidence of the ion-ion potentials from heavy ion elastic scattering. Phys. Lett. B 65, 19 (1976).

https://doi.org/10.1016/0370-2693(76)90524-4

H. Ngˆo, C. Ngˆo. Calculation of the real part of the interaction potential between two heavy ions in the sudden approximation. Nucl. Phys. A 348, 140 (1980).

https://doi.org/10.1016/0375-9474(80)90550-3

V. Yu Denisov. Interaction potential between heavy ions. Phys. Lett. B 526, 315 (2002).

https://doi.org/10.1016/S0370-2693(01)01513-1

M. Aygun. A comprehensive analysis of elastic scattering of 14N projectile on 7Li, 9Be, 11B, 12C, 16O, 26Mg, 28Si, 40Ca, 56Fe, 59Co, 60,62Ni, 70,74Ge, 90Zr, 112Cd, 118Sn, 159Tb and 197Au at various incident energies. Chin. J. Phys. 55, 2559 (2017).

https://doi.org/10.1016/j.cjph.2017.09.016

M. Aygun. Analysis with SDHO and RMF density distributions of elastic scattering cross-sections of oxygen isotopes(16−18O) by various target nuclei. Int. J. Mod. Phys. E 27, 1850055 (2018).

https://doi.org/10.1142/S0218301318500556

M. Aygun. Double-folding analysis of the 6Li + 58Ni reaction using the ab initio density distribution. Eur. Phys. J. A 48, 145 (2012).

https://doi.org/10.1140/epja/i2012-12145-y

M. Aygun, Y. Kucuk, I. Boztosun, A.A. Ibraheem. Microscopic few-body and Gaussian-shaped density distributions

for the analysis of the 6He exotic nucleus with different target nuclei. Nucl. Phys. A 848, 245 (2010).

https://doi.org/10.1016/j.nuclphysa.2010.09.005

M. Aygun. A comprehensive description of 19F elastic scattering by 12C, 16O, 66Zn, 159Tb, and 208Pb target nuclei. Braz. J. Phys. 49, 760 (2019).

https://doi.org/10.1007/s13538-019-00680-7

T. Ulucay, M. Aygun. A comprehensive description of elastic scattering angular distributions for eight different density distribution of 32S nucleus. Rev. Mex. Fis. 66, 336 (2020).

https://doi.org/10.31349/RevMexFis.66.336

https://www.phy.anl.gov/theory/research/density/

C. Ngˆo, B. Tamain, M. Beiner, R.J. Lombard, D. Mas, H.H. Deubler. Properties of heavy ion interaction potentials calculated in the energy density formalism. Nucl. Phys. A 252, 237 (1975).

https://doi.org/10.1016/0375-9474(75)90614-4

R.K. Gupta, D. Singh, W. Greiner. Semiclassical and microscopic calculations of the spin-orbit density part of the Skyrme nucleus-nucleus interaction potential with temperature effects included. Phys. Rev. C 75, 024603 (2007).

https://doi.org/10.1103/PhysRevC.75.024603

O.N. Ghodsi, F. Torabi. Comparative study of fusion barriers using Skyrme interactions and the energy density functional. Phys. Rev. C 92, 064612 (2015).

https://doi.org/10.1103/PhysRevC.92.064612

R.K. Gupta, D. Singh, R. Kumar, W. Greiner. Universal functions of nuclear proximity potential for Skyrme nucleus-nucleus interaction in a semiclassical approach. J. Phys. G: Nucl. Part. Phys. 36, 075104 (2009).

https://doi.org/10.1088/0954-3899/36/7/075104

L.C. Chamon, B.V. Carlson, L.R. Gasques, D. Pereira, C. De Conti, M.A.G. Alvarez, M.S. Hussein, M.A. Cˆandido Ribeiro, E.S. Rossi, Jr., C.P. Silva. Toward a global description of the nucleus-nucleus interaction. Phys. Rev. C 66, 014610 (2002).

https://doi.org/10.1103/PhysRevC.66.014610

W.M. Seif, H. Mansour. Systematics of nucleon density distributions and neutron skin of nuclei. Int. J. Mod. Phys. E 24, 1550083 (2015).

https://doi.org/10.1142/S0218301315500834

M. Ismail, W.M. Seif, W.M. Tawfik, A.M. Hussein. Effect of choosing the Qa-values and daughter density distributions on the magic numbers predicted by a decays. Ann. Physics 406, 1 (2019).

https://doi.org/10.1016/j.aop.2019.03.020

C. Jouanne, V. Lapoux, F. Auger, N. Alamanos, A. Drouart, A. Gillibert, G. Lobo, A. Musumarra, L. Nalpas, E. Pollacco, J.-L. Sida, M. Trotta, Y. Blumenfeld, E. Khan, T. Suomij¨arvi, T. Zerguerras, P. RousselChomaz, H. Savajols, A. Lagoyannis, A. Pakou. Structure of low-lying states of 10,11C from proton elastic and inelastic scattering. Phys. Rev. C 72, 014308 (2005).

https://doi.org/10.1103/PhysRevC.72.014308

H. Schechter, L.F. Canto. Proximity formulae for folding potentials. Nucl. Phys. A 315, 470 (1979).

https://doi.org/10.1016/0375-9474(79)90623-7

S.A. Moszkowski. Energy dependence of the ion-ion potential with a simplified energy density method. Nucl. Phys. A 309, 273 (1978).

https://doi.org/10.1016/0375-9474(78)90548-1

M. El-Azab Farid, M.A. Hassanain. Density-independent folding analysis of the 6,7Li elastic scattering at intermediate energies. Nucl. Phys. A 678, 39 (2000). https://doi.org/10.1016/S0375-9474(00)00313-4

M. Aygun. A comparative analysis of the density distributions and the structure models of 9Li. Pramana - J. Phys. 88, 53 (2017).

M. Aygun, Z. Aygun. A theoretical study on different cluster configurations of the 9Be nucleus by using a simple cluster model. Nucl. Sci. Tech. 28, 86 (2017). https://doi.org/10.1007/s41365-017-0239-2

M. Aygun. A comprehensive study on the internal structure and the density distribution of 12Be. Rev. Mex. Fis. 62, 336 (2016).

M. Aygun. A comprehensive theoretical analysis of 22Ne nucleus by using different density distributions, different nuclear potentials and different cluster approach. Int. J. Mod. Phys. E 29, 1950112 (2020). https://doi.org/10.1142/S021830131950112X

A.K. Chaudhuri. Density distribution of 11Li and proton elastic scattering from 9Li and 11Li. Phys. Rev. C 49, 1603 (1994). https://doi.org/10.1103/PhysRevC.49.1603

R.A. Rego. Closed-form expressions for cross sections of exotic nuclei. Nucl. Phys. A 581, 119 (1995). https://doi.org/10.1016/0375-9474(94)00424-L

R.J. Charity, T.D. Wiser, K. Mercurio, R. Shane, L.G. Sobotka, A.H. Wuosmaa, A. Banu, L. Trache, R.E. Tribble. Continuum spectroscopy with a 10C beam: Cluster structure and three-body decay. Phys. Rev. C 80, 024306 (2009). https://doi.org/10.1103/PhysRevC.80.024306

A. Ozawa, I. Tanihata, T. Kobayashi, Y. Sugahara, O. Yamakawa, K. Omata, K. Sugimoto, D. Olson, W. Christie, H. Wieman. Interaction cross sections and radii of light nuclei. Nucl. Phys. A 608, 63 (1996). https://doi.org/10.1016/0375-9474(96)00241-2

I.J. Thompson. Coupled reaction channels calculations in nuclear physics. Comput. Phys. Rep. 7, 167 (1988). https://doi.org/10.1016/0167-7977(88)90005-6

J. Cook. DFPOT - A program for the calculation of double folded potentials. Commun. Comput. Phys. 25, 125 (1982). https://doi.org/10.1016/0010-4655(82)90029-7

Downloads

Published

2021-09-13

How to Cite

Aygun, M. (2021). Comprehensive Research of 10C Nucleus Using Different Theoretical Approaches. Ukrainian Journal of Physics, 66(8), 653. https://doi.org/10.15407/ujpe66.8.653

Issue

Section

Fields and elementary particles