Analytic Analysis of Electronic and Transport Properties of Finite Polyenes


  • L.I. Malysheva Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine



polyene, Green functions, energy gap, transmission coefficient


Various important characteristics of finite polyene chains are found on the basis of approximate solutions of the characteristic equations. The obtained approximate and limit expressions for the wave functions, energy gap, etc. can be used for the analysis of the electronic and transport properties of polyenes, which gives a deeper understanding of the fundamental properties of finite alternating polyene chains. We also demonstrate the high efficiency of the proposed approximations as a zero-order estimate for the numerical solution of the characteristic equation.


B.S. Hudson. Polyacetylene: Myth and reality. Materials 11, 242 (2018).

B.E. Kohler. Electronic properties of linear polyenes. In: Conjugated Polymers, edited by J.L. Bredas, R. Silbey (Kluwer, 1991).

B. Kohler, L. Malysheva, A. Onipko. Molecular orbital coefficients and transition dipoles of real polyenes. J. Chem. Phys. 103, 6068 (1995).

L. Malysheva, A. Onipko. Exact solution for the H¨uckel model of heteropolyenes. Synth. Met. 80, 11 (1996).

L. Malysheva, A. Onipko. Coherent electron transport in molecular contacts: A case of tractable modeling In: Handbook on Nano- and Molecular Electronics, Chapter 23 (CRC Press, 2007).

Y. Tsuji, R. Hoff mann, R. Movassagh, S. Datta. Exponential attenuation of through-bond transmission in a polyene: Theory and potential realizations. J. Chem. Phys. 141, 224311 (2014).

T. Kupka, A. Buczek, M. A. Broda, M. Stach'ow. DFT studies on the structural and vibrational properties of polyenes. J. Mol. Model. 22, 101 (2016).

J.E. Lennard-Jones. The electronic structure of some polyenes and aromatic molecules. I-The nature of the links by the method of molecular orbitals. Proc. Roy. Soc. Ser. A 158, 280 (1937).

L. Malysheva. Spectral problem for graphene fragments and polyenes: An analytic approach. Phys. Status Solidi B 1600773 (2017).

W.P. Su, J.R. Schrieff er, A.J. Heeger. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698 (1979).

Y. Tsuji, E. Estrada. Infl uence of long-range interactions on quantum interference in molecular conduction. A tight-binding (H¨uckel) approach. J. Chem. Phys. 150, 204123 (2019).

R. Landauer. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1 323 (1957).

M. B¨uttiker, Y. Imry, R. Landauer, S. Pinhas. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 31, 6207 (1985).

C. Caroli, R. Combescot, P. Nozi'eres, D. Saint-James. Direct calculation of the tunneling current. J. Phys. C 4 916 (1971).

S. Datta. Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, 1995).

E.G. Petrov. Modifi ed superexchange model for electron tunneling across the terminated molecular wire. Phys. Status Solidi B 256, 1900092 (2019).




How to Cite

Malysheva, L. (2021). Analytic Analysis of Electronic and Transport Properties of Finite Polyenes. Ukrainian Journal of Physics, 66(7), 619.



Semiconductors and dielectrics