Secondary-Ion Mass Spectrometry Study of LaNi5-Hydrogen-Oxygen System

Authors

  • V.A. Litvinov V.N. Karazin National University of Kharkiv
  • I.I. Okseniuk V.N. Karazin National University of Kharkiv
  • D.I. Shevchenko V.N. Karazin National University of Kharkiv
  • V.V. Bobkov V.N. Karazin National University of Kharkiv

DOI:

https://doi.org/10.15407/ujpe66.8.723

Keywords:

secondary ion mass spectrometry, surface, hydrogen storage alloys, hydrogen, oxygen, hydrides

Abstract

The results obtained while studying the surface of the LaNi5 alloy using secondary ion mass spectrometry are reported. It has been shown that the simultaneous action of hydrogen and oxygen on the alloy surface leads to the formation of a complex chemical surface structure consisting of hydrides, hydroxides, and oxides of lanthanum and nickel. The stoichiometric ratios of elements in those compounds depend on the hydrogen and oxygen fractions in the gas mixture. Oxygen interaction with the alloy surface stimulates the surface segregation and grouping of nickel atoms into large clusters. Until there remain sites free from oxides and hydroxides on the surface of such nickel clusters, they serve as catalytically active centers for dissociative chemisorption of hydrogen molecules, thus promoting hydrogenation processes.

References

G. Sandrock. A panoramic overview of hydrogen storage alloys from a gas reaction point of view. J. Alloys Compd. 293-295, 877 (1999).

https://doi.org/10.1016/S0925-8388(99)00384-9

L. Schlapbach, A. Seiler, F. Stucki, H.C. Siegmann. Surface effects and the formation of metal hydrides. J. Less Common Met. 73, 145 (1980).

https://doi.org/10.1016/0022-5088(80)90354-9

A.N. Perevesenzev, B.M. Andreev, V.K. Kapyshev, L.A. Rivkis, M.P. Malek, V.M. Bystritskii, V.A. Stolupin. Hydrides of intermetallic compounds and alloys, their properties and application in atomic technology. Fiz. Elem. Chast. At. Yad. 19, 1386 (1988) (in Russian).

G.D. Sandrock, P.D. Goodell. Surface poisoning of LaNi5, FeTi and (Fe, Mn) Ti by O2 and H2O. J. Less Common Met. 73, 161 (1980).

https://doi.org/10.1016/0022-5088(80)90355-0

G.D. Sandrock, P.D. Goodell. Cyclic life of metal hydrides with impure hydrogen: overview and engineering considerations. J. Less Common Met. 104, 159 (1984).

https://doi.org/10.1016/0022-5088(84)90452-1

H. Uchida, M. Ozawa. Kinetics of hydrogen absorption by LaNi5 with oxide surface layers. Z. Phys. Chem. NF 147, 77 (1986).

https://doi.org/10.1524/zpch.1986.147.1_2.077

P. Selvam, B. Viswanathan, C.S. Swamy, V. Srinivasan. Surface properties and their consequences on the hydrogen sorption characteristics of certain materials J. Less Common Met. 163, 89 (1990).

https://doi.org/10.1016/0022-5088(90)90088-2

F. Schweppe, M. Martin, E. Fromm. Hydrogen absorption of LaNi5 powders precovered with O2, CO, H2S, CO2 or N2. J. Alloys Compd. 253-254, 511 (1997).

https://doi.org/10.1016/S0925-8388(96)03002-2

H.C. Siegmann, L. Schlapbach, C.R. Brundle. Self-restoring of the active surface in the hydrogen sponge LaNi5. Phys. Rev. Lett. 40, 972 (1978).

https://doi.org/10.1103/PhysRevLett.40.972

L. Schlapbach, A. Seiler, H.C. Siegmann, T.V. Waldkirch, P. Zucher, C.R. Brundle. Self restoring of the active surface in LaNi5. Int. J. Hydrog. Energy 4, 21 (1979). https://doi.org/10.1016/0360-3199(79)90126-5

L. Schlapbach, C.R. Brundle. XPS study of the chemisorption induced surface segregation in LaNi5 and ThNi5. J. Phys.-Paris 42, 1025 (1981). https://doi.org/10.1051/jphys:019810042070102500

Th. von Waldkirch, P. Zurcher. Surface segregation in LaNi5 induced by oxygen. Appl. Phys. Lett. 33, 689 (1978). https://doi.org/10.1063/1.90531

F. Stucki, L. Schlapbach. Magnetic properties of LaNi5, FeTi, Mg2Ni and their hydrides. J. Less Common Met. 74, 143 (1980).

https://doi.org/10.1016/0022-5088(80)90084-3

J.J. Burton, E.S. Machlin. Prediction of segregation to alloy surfaces from bulk phase diagrams. Phys. Rev. Lett. 37, 1433 (1976). https://doi.org/10.1103/PhysRevLett.37.1433

W.E. Wallace, R.F. Karlicek, H. Imamura. Mechanism of hydrogen absorption by lanthanum-nickel (LaNi5). J. Phys. Chem. 83, 1708 (1979). https://doi.org/10.1021/j100476a006

H. Uchida, Y. Ohtani, M. Ozawa, T. Kawahata, T. Suzuki. Surface processes of H2 in the initial activationof LaNi5. J. Less Common Met. 172-174, 983 (1991). https://doi.org/10.1016/S0022-5088(06)80004-4

H. Uchida, Y. Ohtani, T. Kawahata, H. Minamitanj, N. Ninomiya, E. Fromm, N. Hosoda, H.H. Uchida. Reaction kinetics of H2 absorption by lanthanum with and without surface oxide layers. J. Less Common Met. 172-174, 832 (1991). https://doi.org/10.1016/0022-5088(91)90210-U

K.-H. Muller, H. Paulus, G. Kiss The influence of surface effects on the hydrogen absorption investigated on the V-H model system. Appl. Surf. Sci. 179, 292 (2001). https://doi.org/10.1016/S0169-4332(01)00297-5

V.T. Cherepin. Ion Microprobe Analysis (Naukova Dumka, 1992) (in Russian).

H. Zuchner, U. Bilitewski, G. Kirch. Auger electron spectroscopy and secondary ion mass spectrometry investigations of the activation of TiFe for hydrogen uptake. J. Less Common Met. 101, 441 (1984). https://doi.org/10.1016/0022-5088(84)90120-6

Metal Hydrides. Edited by W. M'uller, J. Blackledge, G. Libowitz (Atomizdat, 1973) (in Russian).

C.J. Smithells. Metals Reference Book, 7th ed. Edited by E.A. Brandes and G.B. Brook (Butterworth-Heinemann, 1992) [ISBN: 0 7506 3624 6].

Published

2021-09-13

How to Cite

Litvinov, V., Okseniuk, I., Shevchenko, D., & Bobkov, V. (2021). Secondary-Ion Mass Spectrometry Study of LaNi5-Hydrogen-Oxygen System. Ukrainian Journal of Physics, 66(8), 723. https://doi.org/10.15407/ujpe66.8.723

Issue

Section

Surface physics