Adiabatic Compressibility of Aqueous Solutions of Polyols

Authors

  • R.O. Saienko V.G. Korolenko National Pedagogical University of Poltava
  • O.V. Saienko V.G. Korolenko National Pedagogical University of Poltava
  • O.S. Svechnikova Taras Shevchenko National University of Kyiv, Faculty of Physics

DOI:

https://doi.org/10.15407/ujpe66.9.780

Keywords:

adiabatic compressibility, polyols, aqueous solutions

Abstract

According to experimental data on the density of polyol solutions and the propagation velocity of ultrasonic waves in them, the adiabatic compressibilities of the aqueous solutions of erythritol, xylitol, sorbitol, and mannitol are calculated. For all examined solutions, the temperature dependence of the adiabatic compressibility is found to pass through a minimum. As the polyol concentration in water increases, the minimum of the adiabatic compressibility shifts toward lower temperatures. The temperature values corresponding to the minimum of the molar adiabatic compressibility are calculated. The concentration dependences of this parameter are shown to be linear. The presence of a special point for the studied aqueous solutions of polyols is established.

References

L.A. Bulavin, V.L. Kulinskii, N.P. Malomuzh. The singularity of the diameter for the binodal in terms of the entropy-temperature for atomic and molecular liquids. Ukr. J. Phys. 55, 1282 (2010).

L.A. Bulavin, V.L. Kulinskii. Generalized principle of corresponding states and the scale invariant mean-field approach. J. Chem. Phys. 133, 134101 (2010).

L.A. Bulavin, V.L. Kulinskii, N.P. Malomuzh. Peculiarities in the behavior of the entropy diameter for molecular liquids as the reflection of molecular rotations and the excluded volume effects. J. Mol. Liq. 161, 19 (2011).

L.A. Bulavin, V.L. Kulinskii. The unified picture for the classical laws of Batschinski and the rectilinear diameter for molecular fluids. J. Phys. Chem. B 115, 6061 (2011).

V. Pogorelov, I. Doroshenko, G. Pitsevich, V. Balevicius, V. Sablinskas, B. Krivenko, L.G.M. Pettersson. From clusters to condensed phase – FTIR studies of water. J. Mol. Liq. 235, 7 (2017).

A. Vasylieva, I. Doroshenko, Ye. Vaskivskyi, Ye. Chernolevska, V. Pogorelov. FTIR study of condensed water structure. J. Mol. Struct. 1167, 232 (2018).

P. Jedlovszky, L.B. P´artay, A.P. Bart´ok, V.P. Voloshin, N.N. Medvedev, G. Garberoglio, R. Vallauri. Structural and thermodynamic properties of different phases of supercooled liquid water. J. Chem. Phys. 128, 244503 (2008).

H.E. Stanley. Understanding static and dynamic heterogeneities in confined water. Z. Phys. Chem. 223, 939 (2009).

L.A. Bulavin, Y.F. Zabashta, A.M. Khlopov, A.V. Khorol’skii. Molecular mechanism of the viscosity of aqueous glucose solutions. Russ. J. Phys. Chem. 91, 89 (2017).

L.A. Bulavin, A.V. Chalyi, O.I. Bilous. Anomalous propagation and scattering of ultrasound in 2-propanol water solution near its singular point. J. Mol. Liq. 235, 24 (2017).

V. Pogorelov, A. Yevglevsky, I. Doroshenko, L. Berezovchuk, Yu. Zhovtobryuch. Nanoscale molecular clusters and vibrational relaxation in simple alcohols. Superlat. Microstruct. 44, 571 (2008).

P. Golub, V. Pogorelov, I. Doroshenko. The structural peculiarities of liquid n-heptanol and n-octanol. J. Mol. Liq. 169, 80 (2012).

O.V. Khorolskyi. The nature of viscosity of polyvinyl alcohol solutions in dimethyl sulfoxide and water. Ukr. J. Phys. 62, 858 (2017).

L.A. Bulavin, A.M. Getalo, O.P. Rudenko, O.V. Khorolskyi. Influence of fluorination on the physical properties of normal aliphatic alcohols. Ukr. J. Phys. 60, 428 (2015).

N.A. Atamas, A.M. Yaremko, L.A. Bulavin, V.E. Pogorelov, S. Berski, Z. Latajka, H. Ratajczak, A. AbkowiczBie´nko. Anharmonic interactions and Fermi resonance in the vibrational spectra of alcohols. J. Mol. Struct. 605, 187 (2002).

M.P. Kozlovskii. Free energy of 3D Ising-like system near the phase transition point. Condens. Matter Phys. 12, 151 (2009).

M.P. Kozlovskii, R.V. Romanik. Influence of an external field on the critical behavior of the 3D Ising-like model. J. Mol. Liq. 167, 14 (2012).

L.A. Bulavin, V.Ya. Gotsulskiy, V.E. Chechko. Light scattering by aqueous solution of alcohols near their singular points. Ukr. J. Phys. 59, 881 (2014).

V. Gotsulskiy, V. Chechko, Y. Melnik. The origin of light scattering by aqueous solutions of alcohols in vicinities of their singular points. Ukr. J. Phys. 60, 780 (2019).

L. Bulavin, V. Gotsulskiy, N. Malomuzh, M. Stiranets. Refractometry of water–ethanol solutions near their contraction point. Ukr. J. Phys. 60, 1108 (2019).

L. Bulavin, O. Bilous, O. Svechnikova. Relaxation time of concentration fluctuations in a vicinity of the critical stratification point of the binary mixture n-pentanol–nitromethane. Ukr. J. Phys. 61, 879 (2019).

L. Bulavin, O. Bilous, A. Balega, O. Svechnikova. Anomalies of the sound absorption coefficient for binary solutions with a critical stratification temperature. Ukr. J. Phys. 63, 308 (2018).

I.G. Mykhailov, V.A. Soloviov, Yu.P. Sirnikov. Fundamentals of Molecular Acoustics (Nauka, 1964) (in Russian).

O.V. Grineva, E.V. Belyaeva. Structure of water–glycine solutions in saturated and near-saturated regions according to compressibility data. J. Struct. Chem. 52, 1139 (2011).

Published

2021-10-04

How to Cite

Saienko, R., Saienko, O., & Svechnikova, O. (2021). Adiabatic Compressibility of Aqueous Solutions of Polyols. Ukrainian Journal of Physics, 66(9), 780. https://doi.org/10.15407/ujpe66.9.780

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics

Most read articles by the same author(s)