Two-Mode Squeezed and Entangled Light Production in Parametric Oscillations

Authors

  • D. Ayehu Department of Physics, Wollo University

DOI:

https://doi.org/10.15407/ujpe66.8.674

Keywords:

two-mode light, two-mode squeezing, entanglement, photon number correlation

Abstract

We investigate the statistical and quadrature squeezings, as well as the entanglement properties, of a two-mode light generated by non-degenerate parametric oscillations coupled to a two-mode squeezed vacuum reservoir, by employing the solutions of the quantum Langevin equations. It is found that the two-mode light shows the two-mode squeezing and entanglement for all values of the time. Moreover, it is observed that the squeezed vacuum reservoir and the growing amplitude of the pump mode enhance the degrees of two-mode squeezing and entanglement. We have also shown that the amounts of squeezing and entanglement are significant in a region, where the mean photon number is higher, and the photon number correlation is lower.

References

D.F. Walls. Squeezed states of light. Nature 306, 141 (1983).

https://doi.org/10.1038/306141a0

G.J. Milburn, D.F. Walls. Production of squeezed states in a degenerate parametric amplifier. Opt. Commun. 39, 401 (1981).

https://doi.org/10.1016/0030-4018(81)90232-7

Fesseha Kassahun. Refind Quantum Analysis of Light (Create Space Independent publishing Platform, 2014).

M.J. Collett, C.W. Gardiner. Squeezing of intracavity and traveling-wave light fields produced in parametric amplification. Phys. Rev. A 30, 1386 (1984).

https://doi.org/10.1103/PhysRevA.30.1386

B. Daniel, K. Fesseha. The propagator formulation of the degenerate parametric oscillator. Opt. Commun. 151, 384 (1998).

https://doi.org/10.1016/S0030-4018(98)00039-X

L.A. Lugiato, G. Strini. On the squeezing obtainable in parametric oscillators and bistable absorption. Opt. Comm. 41, 67 (1982).

https://doi.org/10.1016/0030-4018(82)90215-2

S. Tesfa. Two-mode squeezing in a coherently driven degenerate parametric down conversion. Eur. Phys. J. D 46, 351 (2008).

https://doi.org/10.1140/epjd/e2007-00294-2

B. Teklu. Parametric oscillation with the cavity mode driven by coherent light and coupled to a squeezed vacuum reservoir. Opt. Commun. 261, 310 (2006).

https://doi.org/10.1016/j.optcom.2005.12.004

P.D. Drummond, K. Dechoum, S. Chaturvedi. Critical quantum fluctuations in the degenerate parametric oscillator. Phys. Rev. A 65, 033806 (2002).

https://doi.org/10.1103/PhysRevA.65.033806

S. Chaturvedi, K. Dechoum, P.D. Drummond. Limits to squeezing in the degenerate optical parametric oscillator. Phys. Rev. A 65, 033805 (2002).

https://doi.org/10.1103/PhysRevA.65.033805

Daniel Erenso. Enhanced squeezing in the transmitted fields in parametric oscillation with injected squeezed light at the pump frequency. Opt.Soc. Am. B 24, 867 (2007).

https://doi.org/10.1364/JOSAB.24.000867

T. Abebe. The quantum analysis of nondegenerate threelevel laser with spontaneous emission and noiseless vacuum reservoir. Ukr. J. Phys. 63, 969 (2018).

https://doi.org/10.15407/ujpe63.11.969

M. Molla Gessesse. The noise effect of vacuum reservoir on the dynamics of three-level laser pumped by coherent light. Ukr. J. Phys. 65, 385 (2020).

https://doi.org/10.15407/ujpe65.5.385

C.M. Caves. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693 (1981).

https://doi.org/10.1103/PhysRevD.23.1693

J.M. Xiao, L.A. WU, H.J. Kimble. Precision measurement beyond the shot-noise limit. Phys. Rev. Lett. 59, 278 (1987).

https://doi.org/10.1103/PhysRevLett.59.278

J. Gea-Banacloche, G. Leuchs. Applying squeezed states to nonideal interferometers. Opt. Soc. Am. B 4, 1667 (1987).

https://doi.org/10.1364/JOSAB.4.001667

A.F. Pace, M.J. Collet, D.F. Walls. Quantum limits in interferometric detection of gravitational radiation. Phys. Rev. A 47, 3173 (1993).

https://doi.org/10.1103/PhysRevA.47.3173

A.S. Lane, M.D. Reid, D.F. Walls. Absorption spectroscopy beyond the shot-noise limit. Phys. Rev. Lett. 60, 1940 (1988).

https://doi.org/10.1103/PhysRevLett.60.1940

L. Wu, M. Xia, H.J. Kimble. Squeezed states of light from an optical parametric oscillator. J. Opt. Soc. Am. B 4, 1465 (1987).

https://doi.org/10.1364/JOSAB.4.001465

S. Lloyd, S.L. Braunstein. Quantum computation over continuous variables. Phys. Rev. Lett. 82, 1784 (1999).

https://doi.org/10.1103/PhysRevLett.82.1784

S.L. Braunstein, H.J. Kimble. Dense coding for continuous variables. Phys. Rev. A 61, 042302 (2000).

https://doi.org/10.1103/PhysRevA.61.042302

J.M. Liu, B.S. Shi, X.F. Fan, J. Li, G.C. Guo. Wigner function description of continuous variable entanglement swapping. J. Opt. B: Quant. Semiclass. Opt. 3, 189 (2001).

https://doi.org/10.1088/1464-4266/3/4/301

T.C. Ralph. Continuous variable quantum cryptography. Phys. Rev. A 61, 010303 (1999).

https://doi.org/10.1103/PhysRevA.61.010303

Y. Zhang, H. Wang, X. Li, J. Jing, C. Xie, K. Peng. Experimental generation of bright two-mode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier. Phys. Rev. A 62, 023813 (2000). https://doi.org/10.1103/PhysRevA.62.023813

E. Alebachew. Continuous-variable entanglement in a nondegenerate three-level laser with a parametric oscillator. Phys. Rev. A 76, 023808 (2007). https://doi.org/10.1103/PhysRevA.76.023808

S. Tesfa. Entanglement amplification in a nondegenerate three-level cascade laser. Phys. Rev. A 74, 043816 (2006). https://doi.org/10.1103/PhysRevA.74.043816

M. Hillery, M.S. Zubairy. Entanglement conditions for twomode states. Phys. Rev. Lett. 96, 050503 (2006). https://doi.org/10.1103/PhysRevLett.96.050503

L.M. Duan, G. Giedke, J.I. Cirac, P. Zoller. Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2722 (2000). https://doi.org/10.1103/PhysRevLett.84.2722

W.H. Louisell. Quantum Statistical Properties of Radiation (Wiley, 1973).

R. Simon. Peres-Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726 (2000). https://doi.org/10.1103/PhysRevLett.84.2726

G. Adesso, A. Serafini, F. Illuminati. Extremal entanglement and mixedness in continuous variable systems. Phys. Rev. A 70, 022318 (2004). https://doi.org/10.1103/PhysRevA.70.022318

Downloads

Published

2021-09-13

How to Cite

Ayehu, D. (2021). Two-Mode Squeezed and Entangled Light Production in Parametric Oscillations. Ukrainian Journal of Physics, 66(8), 674. https://doi.org/10.15407/ujpe66.8.674

Issue

Section

Optics, atoms and molecules