Entropy Production in a Model Biological System with Facilitated Diffusion


  • D.A. Gavryushenko Taras Shevchenko National University of Kyiv, Faculty of Physics
  • K.V. Cherevko Taras Shevchenko National University of Kyiv, Faculty of Physics
  • L.A. Bulavin Taras Shevchenko National University of Kyiv, Faculty of Physics




entropy production, facilitated diffusion, biological system, ideal solution, osmotic boundary conditions


Expressions for the calculation of the diffusion flow and the entropy production in a model biological system, an ideal binary solution in a plane-parallel layer under osmotic boundary conditions and the facilitated diffusion, have been derived in the framework of the linear thermodynamics of irreversible processes. It is shown that the consistent consideration of the dependence of the diffusion coefficient on the field variables leads to a substantial difference of the values obtained for the substance flow and the entropy production in biological systems from the values obtained in the framework of standard approach with a constant diffusion coefficient.


S.R. de Groot, P. Mazur. Non-Equilibrium Thermodynamics (North-Holland, 1962).

S.R. de Groot. Thermodynamics of Irreversible Processes (North-Holland, 1952) [ISBN: 978-1114297821].

M.E. Schimpf, S.N. Semenov. Symmetric diffusion equations, barodiffusion, and cross-diffusion in concentrated liquid mixtures. Phys. Rev. E 70, 031202 (2004).


A.W.E. Janet, H.Y. Elmoazzen, L.E. McGann. A method whereby Onsager coefficients may be evaluated. J. Chem. Phys. 113, 6573 (2000).


D. Zubarev, V. Morozov, G. R'opke. Statistical Mechanics of Nonequilibrium Processes: Basic Concepts, Kinetic Theory (Akademie, 1996), Vol. 1 [ISBN: 3055017080].

C.A. Ward. Effect of concentration on the rate of chemical reactions. J. Chem. Phys. 79, 5605 (1983).


N. Atamas, M. Bakumenko. Dynamics of nonpolar molecules in dimethyl-imidazolium chloride. J. Mol. Liq. 322, 114547 (2020).


R. Kyunil, C.E. Byung. Relation of shear viscosity and self-diffusion coefficient for simple liquids. Phys. Rev. E 60, 4105 (1999).


N.A. Atamas. Structural and dynamic properties of infinitely dilute ionic liquid-nonpolar substance systems. Zh. Neorg. Khim. 62, 461 (2017) (in Russian).


W.G. Hoover. Computational Statistical Mechanics (Elsevier, 1991).

N.A. Atamas. Mechanisms of the diffusion of nonpolar substances in a hydrophilic ionic liquid. Russ. J. Phys. Chem. 92, 37 (2018).


V.I. Vasilyeva, V.A. Shaposhnik, I.A. Zemlyanukhina, O.V. Grigorchuk. Facilitated diffusion of aminoacids in anion-exchange membranes. Zh. Fiz. Khim. 77, 1129 (2003) (in Russian).

V.I. Vasilyeva, V.A. Shaposhnik, O.V. Grigorchuk, M. Metaye, E.O. Ovcharenko. Distribution of aminoacid concentration at diffusion through a cation-exchange membrane. Zh. Fiz. Khim. 74, 937 (2000) (in Russian).

S.T. Hwang, K. Kammermayer. Membranes in Separations (Wiley, 1975).

J.B. Wittenberg. The molecular mechanism of hemoglobinfascilated oxygen diffusion. J. Biol. Chem. 241, 104 (1966).


B.A. Wittenberg, J.B. Wittenberg, P.R.B. Caldwell. Role of myoglobin in the oxygen supply to red skeletal muscle. Biol. Chem. 250, 9038 (1975).


B.A. Wittenberg, J.B. Wittenberg. Myoglobin function reassessed. J. Exp. Biol. 206, 2011 (2003).


I.A. Jelicks, B.A. Wittenberg. Nuclear magnetic resonance studies of sarcoplasmic oxygenation in the red cell-perfused rat heart. Biophys. J. 68, 2129 (1995).


J.D. Murray. On the molecular mechanism of facilitated oxygen diffusion by haemoglobin and myoglobin. Proc. R. Soc. Lond. B 178, 95 (1971). https://doi.org/10.1098/rspb.1971.0054

J.D. Murray. Lectures on Nonlinear-Differential Equations: Models in Biology (Clarendon Press, 1977) [ISBN: 978-0198533504].

I. Prigogine. The Molecular Theory of Solutions (NorthHolland, 1957).

V.A. Durov, E.P. Ageev, Thermodynamic Theory of Solutions (Moscow State University, 1987) (in Russian).

B.A. Wittenberg, J.B. Wittenberg. Faciliated oxygen diffusion by oxygen carriers. In: Oxygen and Living Processes. Edited by D.L. Gilbert (Springer, 1981), p. 177. https://doi.org/10.1007/978-1-4612-5890-2_9

K.V. Cherevko, D.A. Gavryushenko, V.M. Sysoev. The influence of the chemical reactions on the diffusion phenomena in the cylincrical systems bounded with the membranes. J. Mol. Liq. 127, 71 (2006).


N. Sundaram, N.A. Peppas. Friction coefficient analysis of multicomponent solute transport through polymer membranes. J. Appl. Polym. Sc. 60, 95 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960404)60:1<95::AID-APP11>3.0.CO;2-2

K.V. Cherevko, D.A. Gavryushenko, J.V. Kulyk, V.M. Sysoev. Stationary diffusion in the membrane systems with the ongoing reversible chemical reactions. J. Mol. Liq. 120, 71 (2005). https://doi.org/10.1016/j.molliq.2004.07.038

M.I. Shakhparonov. Mechanisms of Fast Processes in Liquids (Vysshaya Shkola, 1985) (in Russian).

L.A. Gribov, I.V. Maslov. About a possible approach to modeling bimolecular chemical reactions. Zh. Fiz. Khim. 74, 441 (2000) (in Russian).

L.A. Gribov, V.I. Baranov, D.Yu. Zelentsov. ElectronicVibrational Spectra of Polyatomic Molecules. Theory and Calculation Methods (Nauka, 1997) (in Russian).

V.M. Sysoev, I.A. Fakhretdinov, S.G. Shpyrko. Thermodynamic perturbation theory and Gibbs potential of ternary solutions. Zh. Fiz. Khim. 71, 2142 (1997) (in Russian).



How to Cite

Gavryushenko, D., Cherevko, K., & Bulavin, L. (2021). Entropy Production in a Model Biological System with Facilitated Diffusion. Ukrainian Journal of Physics, 66(8), 714. https://doi.org/10.15407/ujpe66.8.714



Physics of liquids and liquid systems, biophysics and medical physics