Surface and Interface Bands of the CdTe–HgTe–CdTe Heterostructure: Evidence of Metallicity

Authors

  • I.N. Yakovkin Institute of Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe66.7.630

Keywords:

surface states, density functional calculations, HgTe–CdTe layers

Abstract

Performed full-relativistic DFT calculations have demonstrated that thin HgTe layers are metallic and, with increasing thickness, do not become insulators – either ordinary band insulators or topological insulators. The variations of the potential at the CdTe–HgTe interfaces are found to be negligible in comparison with those at the terminating surfaces of the CdTe–HgTe–CdTe films, so that the interfaces in fact do not form any potential well. It is shown that the interface-related bands of the CdTe–HgTe–CdTe films are situated well below EF, so that a dominant input into the density of states at EF and, therefore, to the conductivity is provided not by the interface states, but by the surface bands of the net layered system. It is reasonable therefore to consider an alternative interpretation of the reported thickness dependence of the conductivity of the system, such as the possible surface segregation of components or unavoidable contaminations, which seems much more realistic than the interpretation based on involving topological insulators and topologically protected surface states.

References

K.V. Klitzing, G. Dorda, M. Pepper. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494 (1980). https://doi.org/10.1103/PhysRevLett.45.494

C.L. Kane, E.J. Mele. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

https://doi.org/10.1103/PhysRevLett.95.226801

L. Fu, C.L. Kane. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

https://doi.org/10.1103/PhysRevB.76.045302

S. Murakami. Quantum spin Hall effect and enhanced magnetic response by spin-orbit coupling. Phys. Rev. Lett. 97, 236805 (2006).

https://doi.org/10.1103/PhysRevLett.97.236805

B.A. Bernevig, S.-C. Zhang. Quantum spin Hall effect. Phys. Rev. Lett. 96, 106802 (2006).

https://doi.org/10.1103/PhysRevLett.96.106802

B.A. Bernevig, T.L. Hughes, S.-C. Zhang. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757 (2006).

https://doi.org/10.1126/science.1133734

M. K¨onig, H. Buhmann, L.W. Molenkamp, T.L. Hughes, C.-X. Liu, X.-L. Qi, S.-C. Zhang. The quantum spin Hall effect: Theory and experiment. Science 318, 766 (2007).

https://doi.org/10.1126/science.1148047

X.-L. Qi, S.-C. Zhang. The quantum spin Hall effect and topological insulators. Physics Today 63, 33 (2010).

https://doi.org/10.1063/1.3293411

P. Sengupta, T. Kubis, Y. Tan, M. Povolotskyi, G. Klimeck. Design principles for HgTe based topological insulator devices. J. Appl. Phys. 114, 043702 (2013).

https://doi.org/10.1063/1.4813877

S. K¨ufner, F. Bechstedt. Topological transition and edge states in HgTe quantum wells from fi rst principles. Phys. Rev. B 89, 195312 (2014).

https://doi.org/10.1103/PhysRevB.89.195312

J.-W. Luo, A. Zunger. Design principles and coupling mechanisms in the 2D quantum well topological insulator HgTe/CdTe. Phys. Rev. Lett. 105, 176805 (2010).

https://doi.org/10.1103/PhysRevLett.105.176805

J. Anversa, P. Piquini, T.M. Schmidt. First-principles study of HgTe/CdTe heterostructures under perturbations preserving time-reversal symmetry. Phys. Rev. B 90, 195311 (2014).

https://doi.org/10.1103/PhysRevB.90.195311

C. Br¨une, C.X. Liu, E.G. Novik, E.M. Hankiewicz, H. Buhmann, Y.L. Chen, X.L. Qi, Z.X. Shen, S.C. Zhang, L.W. Molenkamp. Quantum Hall eff ect from the topological surface states of strained bulk HgTe. Phys. Rev. Lett. 106, 126803 (2011).

https://doi.org/10.1103/PhysRevLett.106.126803

X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, D.C. Allan. First-principles computation of material properties: The ABINIT software project. Comput. Mat. Sci. 25, 478 (2002).

https://doi.org/10.1016/S0927-0256(02)00325-7

N. Troullier, J.L. Martins. Effi cient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993 (1991).

https://doi.org/10.1103/PhysRevB.43.1993

S. Goedecker, M. Teter, J. Hutter. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703 (1996).

https://doi.org/10.1103/PhysRevB.54.1703

N. Berchenko, M.V. Pashkovskii. Mercury telluride - a zero-gap semiconductor. Usp. Fiz. Nauk 119 (6), 223 (1976).

https://doi.org/10.3367/UFNr.0119.197606b.0223

N. Orlowski, J. Augustin, Z. Go lacki, C. Janowitz, R. Manzke. Direct evidence for the inverted band structure of HgTe. Phys. Rev. B 61, R5058(R) (2000). https://doi.org/10.1103/PhysRevB.61.R5058

K.-U. Gawlik, L. Kipp, M. Skibowski, N. Or lowski, R. Manzke. HgSe: Metal or semiconductor? Phys. Rev. Lett. 78, 3165 (1997). https://doi.org/10.1103/PhysRevLett.78.3165

C. Janowitz, N. Orlowski, R. Manzke, Z. Golacki. On the band structure of HgTe and HgSe - view from photoemission. J. of Alloys and Compounds 328, 84 (2001). https://doi.org/10.1016/S0925-8388(01)01350-0

I.N. Yakovkin, P.A. Dowben. The problem of the band gap in LDA calculations. Surf. Rev. Lett. 14, 481 (2007). https://doi.org/10.1142/S0218625X07009499

Downloads

Published

2021-08-04

How to Cite

Yakovkin, I. (2021). Surface and Interface Bands of the CdTe–HgTe–CdTe Heterostructure: Evidence of Metallicity. Ukrainian Journal of Physics, 66(7), 630. https://doi.org/10.15407/ujpe66.7.630

Issue

Section

Surface physics