Vortex Structures and Electron Beam Dynamics in Magnetized Plasma

Authors

  • V.I. Maslov Space Research Institute, Nat. Acad. of Sci. of Ukraine and the State Space Agency of Ukraine, NSC Kharkiv Institute of Physics and Technology, Nat. Acad. of Sci. of Ukraine
  • O.K. Cheremnykh Space Research Institute, Nat. Acad. of Sci. of Ukraine and the State Space Agency of Ukraine
  • A.P. Fomina Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • R.I. Kholodov Institute of Applied Physics, Nat. Acad. of Sci. of Ukraine
  • O.P. Novak Institute of Applied Physics, Nat. Acad. of Sci. of Ukraine
  • R.T. Ovsiannikov Karazin Kharkiv National University

DOI:

https://doi.org/10.15407/ujpe66.4.310

Keywords:

electron beam dynamics, double electric layer, mechanism of electron reflection, Jovian ionosphere, plasma, vortices

Abstract

We investigate the formation of vortex structures at the refl ection of an electron beam from the double layer of the Jupiter ionosphere. The infl uence of these vortex structures on the formation of dense upward electron fl uxes accelerated by the double layer potential along the Io flux tube is studied. The phase transition to the cyclotron superradiance mode becomes possible for these electrons. The conditions of the formation of vortex perturbations are considered. The nonlinear equation that describes the vortex dynamics of electrons is constructed, and its consequences are studied.

References

T.D. Carr, M.D. Desch, J.K. Alexander. Phenomenology of Magnetospheric Radio Emissions, Physics of the Jovian

Magnetosphere. Edited by A.J. Dessler (Cambridge Univ. Press, 1983).

N. Krupp et al. Dynamics of the Jovian Magnetosphere, in Jupiter: Planet, Satellites, Magnetosphere. Edited by F. Bagenal (Cambridge Univ. Press, 2004) [ISBN: 0-521-81808-7].

J.T. Clarke et al. Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter. Nature 415 (6875), 997 (2002).

https://doi.org/10.1038/415997a

J.E.P. Connerney et al. Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. Science 356, 826 (2017).

https://doi.org/10.1126/science.aam5928

B.H. Mauk, D.K. Haggerty et al. Discrete and broadband electron acceleration in Jupiter's powerful aurora. Nature 549, 66 (2017).

https://doi.org/10.1038/nature23648

W.R. Dunn, G. Branduardi-Raymont et al. The independent pulsations of Jupiter's northern and southern X-ray auroras. Nature. Astronomy 1, 758 (2017).

https://doi.org/10.1038/s41550-017-0262-6

D.J. McComas, N. Allegrini et al. The Jovian auroral distributions experiment (JADE) on the Juno mission to Jupiter. Space Sci. Rev. 213, 547 (2017).

https://doi.org/10.1007/s11214-013-9990-9

B.H. Mauk et al. Juno observation of energetic charged particles over Jupiter's polar regions: Analysis of monodirectional and bidirectional electron beams. Geophys. Res. Lett. 44, 4410 (2017).

https://doi.org/10.1002/2016GL072286

W.S. Kurth, M. Imai et al. A new view of Jupiter's auroral radio spectrum. Geophys. Res. Lett. 44, 7114 (2017).

https://doi.org/10.1002/2017GL072889

P.I. Fomin, A.P. Fomina. Dicke superradiance on Landau levels. Probl. of atomic sci. and techn. 1, 45 (2001).

V.M. Mal'nev, A.P. Fomina, P.I. Fomin. Polarization phase transition to the superradiance regime of the inverted system of electrons on high Landau levels. Ukr. J. Phys. 47, 1001 (2002).

P.I. Fomin, A.P. Fomina, V.N. Mal'nev. Superradiation of magnetized electrons and the power of decameter radiation of the Jupiter-Io system. Ukr. J. Phys. 49, 3 (2004).

О.P. Novak, A.P. Fomina, R.I. Kholodov. Account of the longitudinal temperature in cyclotron superradiance. Probl. of Atomic Sci. and Techn. 85, 69 (2013).

О. Novak, R. Kholodov, A. Fomina. Role of double layers in the formation of conditions for a polarization phase transition to the superradiance state in the Io flux tube. Ukr. J. Phys. 63, 740 (2018).

https://doi.org/10.15407/ujpe63.8.740

V.I. Maslov. The double layer formed by a nonrelativistic electron beam in the one-dimensional plasma. Ukr. J. Phys. 33, 1342 (1988).

V.I. Maslov. Electron beam refl ection from the plasma due to double layer formation. In: Proc. of 4th Int. Workshop on Nonlinear and Turbulent Processes in Physics (Singapore, 1990), p. 898.

V.I. Maslov. Properties and evolution of nonstationary double layers in nonequilibrium plasma. In: Proc. of 4th

Symposium on Double Layers and Other Nonlinear Structures in Plasma (Innsbruck, 1992), p. 82.

V.I. Maslov. Double layer formed by a relativistic electron beam. Sov. J. of Plasma Phys. 18, 676 (1992).

V.I. Maslov, V.V. Oraevsky, Yu.Ya. Ruzhin. Ion acceleration in collective fi elds at electron beam injection from spacecraft in experiment "APEX". Phys. Scr. 57, 453 (1998).

https://doi.org/10.1088/0031-8949/57/3/019

V. Lapshin, V. Maslov, V. Stomin. Analytical description of T. Sato's mechanism of transformation of ion-acoustic

double layer into strong Buneman's one in cosmic and laboratory nonequilibrium plasmas. J. Plasma Fusion Res. Ser. 4, 564 (2001).

Ie.V. Borgun, N.A. Azarenkov, A. Hassanein, A.F. Tseluyko, V.I. Maslov, D.L. Ryabchikov. Double layer influence on dynamic of the EUV radiation from plasma of the high-current pulse diode in the tin vapour. Phys. Lett. A 377 (3-4), 307 (2013).

https://doi.org/10.1016/j.physleta.2012.11.027

M.A. Raadu. The physics of double layers and their role in astrophysics. Phys. Rep. 178, 25 (1989).

https://doi.org/10.1016/0370-1573(89)90109-9

R.E. Ergun, Y.J. Su, L. Andersson et al. Direct observation of localized parallel electric fi elds in a space plasma. Phys. Rev. Lett. 87, 045003 (2001).

https://doi.org/10.1103/PhysRevLett.87.045003

V.I. Maslov, I.P. Levchuk, S. Nikonova, I.N. Onishchenko. Occurrence of accelerating field, formation and dynamics of relativistic electron beam near Jupiter. East Eur. J. Phys. 5, 78 (2018).

https://doi.org/10.26565/2312-4334-2018-2-11

V.I. Maslov, A.P. Fomina, R.I. Kholodov, I.P. Levchuk, S. Nikonova, O.P. Novak, I.N. Onishchenko. Accelerating

field excitation, occurrence and evolution of electron beam near Jupiter. Probl. of Atomic Sci. and Techn. 4, 106 (2018).

P.J. Hendricks. Vorticity transport by electromagnetic forces. NUWC-NPT Techn. Report 10, 712 (1998).

https://doi.org/10.21236/ADA345445

H. Helmholtz. Uber integralle der hydrodynamischen Gleichungen, welche den Wirbewegungen entsprechen. Crelle J. 55, 25 (1858). https://doi.org/10.1515/crll.1858.55.25

W. Thomson. On vortex motion. Trans. Roy. Soc. Edinburgh 25, 217, (1869). https://doi.org/10.1017/S0080456800028179

C. Paranicas, B. Mauk et al. Intervals of intense energetic electron beams over Jupiter's poles. J. of Geoph. R.: Space Physics 123 (A10), 1989 (2018). https://doi.org/10.1002/2017JA025106

A. Mura, A. Adriani, J.E.P. Connerney et al. Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter. Science 361 (6404), 774 (2018). https://doi.org/10.1126/science.aat1450

Downloads

Published

2021-05-13

How to Cite

Maslov, V., Cheremnykh, O., Fomina, A., Kholodov, R., Novak, O., & Ovsiannikov, R. (2021). Vortex Structures and Electron Beam Dynamics in Magnetized Plasma. Ukrainian Journal of Physics, 66(4), 310. https://doi.org/10.15407/ujpe66.4.310

Issue

Section

Plasma physics