Characterization of Cobalt Phthalocyanine Thin Film on Silicon Substrate Using Spectroscopic Ellipsometry

Authors

  • K.M. Al-Adamat Al al-Bayt University, Faculty of Science, Department of Physics
  • H.M. El-Nasser Al al-Bayt University, Faculty of Science, Department of Physics

DOI:

https://doi.org/10.15407/ujpe66.7.562

Keywords:

spectroscopic ellipsometry, cobalt phthalocyanine, optical constants, Gaussian oscillators, uniaxial material

Abstract

The cobalt phthalocyanine film (CoPc) was prepared by an ultra-high vacuum system onto a silicon substrate. Structural features and optical properties of the organic semiconductor CoPc has been determined with the use of spectroscopic ellipsometry over the wavelength interval 300–1000 nm. By restricting it to 900–1000 nm the film thickness is determined, and, by the point-by-point fit, the behavior of the dielectric function is established in the entire spectral region. Thus, the optical properties are determined from spectral ellipsometric data using mathematical models based on Gaussian oscillators, which have led to an excellent fit to the experimental data with a relatively low mean square error. Cobalt phthalocyanine was treated as a uniaxial material.

References

Z. Ma, J. Zhao, X. Wang, J. Yu. Effect of bulk and planar heterojunctions based charge generation layers on the performance of tandem organic light-emitting diodes. Organic Electronics 30, 136 (2016).

https://doi.org/10.1016/j.orgel.2015.12.020

Po-Ching Kao, Sheng-Yuan Chu, Zong-Xian You, S.J. Liou, Chan-An Chuang. Improved efficiency of organic light-emitting diodes using CoPc buffer layer. Thin Solid Films 498, 249 (2006).

https://doi.org/10.1016/j.tsf.2005.07.120

H. Soliman, A. El-Barry, N. Khosifan, M. El Nahass. Structural and electrical properties of thermally evaporated cobalt phthalocyanine (CoPc) thin fi lms. Europ. Phys. J. Appl. Phys. 37, 1 (2007).

https://doi.org/10.1051/epjap:2006135

A.B. Djuriˇsi'c, C.Y. Kwong, T.W. Lau, Z.T. Liu, H.S. Kwok, L.S.M. Lam, W.K. Chan. Spectroscopic ellipsometry of metal phthalocyanine thin films. Appl. Opt. 42, 6382 (2003).

https://doi.org/10.1364/AO.42.006382

U. Heinemeyer, A. Hinderhofer, M. Alonso, J. Oss'o, M. Garriga, M. Kytka, A. Gerlach, F. Schreiber. Uniaxial anisotropy of organic thin films determined by ellipsometry. Phys. Status Sol. (a) 205, 927 (2008).

https://doi.org/10.1002/pssa.200777765

M. Campoy-Quiles, P. Etchegoin, D. Bradley. On the optical anisotropy of conjugated polymer thin films. Phys. Rev. B (a) 72, 045209 (2005).

https://doi.org/10.1103/PhysRevB.72.045209

B.P. Lyons, A.P. Monkman. A comparison of the optical constants of aligned and unaligned thin polyfluorene films. J. Appl. Phys. 96, 4735 (2004).

https://doi.org/10.1063/1.1790575

H. Fujiwara. Spectroscopic Ellipsometry: Principles and Applications. (Wiley, 2007).

https://doi.org/10.1002/9780470060193

H.M. El-Nasser. Impact of annealing on structural and optical properties of CoPc thin films. Mater. Sci. Res. India 12, 15 (2015).

https://doi.org/10.13005/msri/120103

H.M. El-Nasser, O.D. Ali. Effect of molecular weight and uv illumination on optical constants of PMMA thin films. Iranian Polymer J. 19, 57 (2010).

H.M. El-Nasser. Morphology and spectroscopic ellipsometry of PMMA thin films. Appl. Phys. Res. 9, (2017).

https://doi.org/10.5539/apr.v9n2p5

G.E. Jellison, Jr., V.I. Merkulov, A.A. Puretzky, D.B. Geohegan, G. Eres, D.E. Lowndes, J.B. Caughman. Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry. Thin Solid Films 377, 68 (2000).

https://doi.org/10.1016/S0040-6090(00)01384-5

R. Pascu, M. Dinescu. Spectroscopic ellipsometry. Romanian Reports in Physics 64, 135 (2012).

V. Batra, S. Kotru, M. Varagas, C.V. Ramana. Optical constants and band gap determination of Pb0.95La0.05

Zr0.54Ti0.46O3 thin films using spectroscopic ellipsometry and UV-visible spectroscopy. Opt. Mater. 49, 123 (2015).

https://doi.org/10.1016/j.optmat.2015.08.019

H.G. Tompkins, T. Tiwald, C. Bungay, A.E. Hooper. Measuring the thickness of organic/polymer/biological films on glass substrates using spectroscopic ellipsometry. J. Vacuum Sci. & Technology A: Vacuum, Surfaces, and Films 24, 1605 (2006).

https://doi.org/10.1116/1.2172945

Z.T. Liu, Hoi Sing Kwok, A.B. Djurisi'c. The optical functions of metal phthalocyanines. J. Phys. D: Appl. Phys. 37, 678 (2004). https://doi.org/10.1088/0022-3727/37/5/006

J.A. Woollam. Guide to Using WVASE Spectroscopic Ellipsometry Data Acquisition and Analysis Software (2008).

O.D. Gordan, M. Friedrich, D.R.T. Zahn. The anisotropic dielectric function for copper phthalocyanine thin films.

Organic Electronics 5, 291 (2004). https://doi.org/10.1016/j.orgel.2004.10.001

J. Sindu Louis, D. Lehmann, M. Friedrich, D.R.T. Zahn. Study of dependence of molecular orientation and optical

properties of zinc phthalocyanine grown under two different pressure conditions. J. Appl. Phys. 101, 013503 (2007). https://doi.org/10.1063/1.2403845

K.M. Al-Adamat, H.M. El-Nasser. 6th International Conference on Materials Science and Nanotechnology For Next Generation, Abstract Book. (Nigde, 2019).

Q. Chen, D. Gu, F. Gan. Ellipsometric spectra of cobalt phthalocyanine fi lms. Phys. B: Condensed Matter 212, 189 (1995). https://doi.org/10.1016/0921-4526(94)00007-I

Downloads

Published

2021-08-04

How to Cite

Al-Adamat, K., & El-Nasser, H. (2021). Characterization of Cobalt Phthalocyanine Thin Film on Silicon Substrate Using Spectroscopic Ellipsometry. Ukrainian Journal of Physics, 66(7), 562. https://doi.org/10.15407/ujpe66.7.562

Issue

Section

Optics, atoms and molecules