Skyrme–Hartree–Fock–Bogoliubov Calculations of Even and Odd Neutron-Rich Mg Isotopes
DOI:
https://doi.org/10.15407/ujpe66.11.928Keywords:
Hartree–Fock–Bogoliubov theory, Mg isotopes, binding energy, proton and neutron rms radii, quadrupole deformation parameter (B2)Abstract
Using the Skyrme functional with SIII, SKM*, SLy4, and UNE0 sets of parameters and the Hartree–Fock–Bogoliubov mean-field method; the ground-state properties of even-even and even-odd neutron-rich Mg isotopes have been investigated. The results of calculations of the binding energy per nucleon (B/A), the one- and two-neutron separation energies (Sn and S2n), proton and neutron rms radii, neutron pairing gap, and quadrupole deformation parameter (B2) have been compared with the available experimental data, the results of Hartree–Fock–Bogoliubov calculations based on the D1S Gogny force, and predictions of some nuclear models such as the Finite Range Droplet Model (FRDM) and Relativistic Mean-Field (RMF) model. Our results show good agreements in comparison with the experimental data and the results of the mentioned models.
References
F. Chappert, N. Pillet, M. Girod, J.-F. Berger. Gogny force with a finite-range density dependence. Phys. Rev. C 91, 034312 (2015).
https://doi.org/10.1103/PhysRevC.91.034312
R. Rodriguez-Guzman, P. Sarriguren, L.M. Robledo, S. Perez-Martin. Charge radii and structural evolution in Sr, Zr, and Mo isotopes. Phys. Let. B 691, 202 (2010).
https://doi.org/10.1016/j.physletb.2010.06.035
W. Nazarewicz, T. R. Werner, J. Dobaczewski. Meanfield description of ground-state properties of drip-line nuclei: Shell-correction method. Phys. Rev. C 50, 2860 (1994).
https://doi.org/10.1103/PhysRevC.50.2860
J. Dobaczewski, W. Nazarewicz, T.R. Werner, J.F. Berger, C.R. Chinn, J. Decharge. Mean-field description of groundstate properties of drip-line nuclei: Pairing and continuum effects. Phys. Rev. C 53, 2809 (1996).
https://doi.org/10.1103/PhysRevC.53.2809
F. Chappert, M. Girod, S. Hilaire. Towards a new Gogny force parametrization: Impact of the neutron matter equation of state. Phys. Lett. B 668, 420 (2008).
https://doi.org/10.1016/j.physletb.2008.09.017
I. Hamamoto. Change of shell structure and magnetic moments of odd-N deformed nuclei towards the neutron drip line. J. Phys. G: Nucl. Part. Phys. 37, 055102 (2010).
https://doi.org/10.1088/0954-3899/37/5/055102
J.C. Pei, M.V. Stoitsov, G.I. Fann, W. Nazarewicz, N. Schunck, F.R. Xu. Deformed coordinate-space Hartree-Fock-Bogoliubov approach to weakly bound nuclei and large deformations. Phys. Rev. C 78, 064306 (2008).
https://doi.org/10.1103/PhysRevC.78.064306
V.E. Oberacker, A.S. Umar, E. Teran, A. Blazkiewicz. Hartree-Fock-Bogoliubov calculations in coordinate space:
Neutron-rich sulfur, zirconium, cerium, and samarium isotopes. Phys. Rev. C 68, 064302 (2003).
https://doi.org/10.1103/PhysRevC.68.064302
P. Ring, P. Schuck. The Nuclear Many-Body Problem (Springer, 1980) [ISBN: 0-387-09820-8].
https://doi.org/10.1007/978-3-642-61852-9
M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz, P. Ring. Axially deformed solution of the Skyrme-Hartree-Fock-Bogoliubov equations using the transformed harmonic oscillator basis. The program HFBTHO (v1.66p). Comput. Phys. Commun. 167, 43 (2005).
https://doi.org/10.1016/j.cpc.2005.01.001
M.V. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam, E. Olsen, J. Sarich, S. Wild. Axially deformed solution of the Skyrme-Hartree-Fock-Bogoliubov equations using the transformed harmonic oscillator basis (II) HFBTHO v2.00d: A new version of the program. Comput. Phys. Commun. 184, 1592 (2013).
https://doi.org/10.1016/j.cpc.2013.01.013
M. Bender, P.-H. Heenen, P.-G. Reinhard. Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75, 121 (2003).
https://doi.org/10.1103/RevModPhys.75.121
J. Dobaczewski, H. Flocard, J. Treiner. Hartree-FockBogolyubov description of nuclei near the neutron-Drip Line. Nucl. Phys. A 422, 103 (1984).
https://doi.org/10.1016/0375-9474(84)90433-0
A. Bulgac. Hartree-Fock-Bogoliubov approximation for finite systems. IPNE FT-194-1980, Bucharest (arXiv: nuclth/9907088) (1980).
J. Bardeen, L.N. Cooper, J.R. Schrieffer. Theory of Superconductivity. Phys. Rev. 108, 1175 (1957).
https://doi.org/10.1103/PhysRev.108.1175
S. Watanabe, K. Minomo, M. Shimada, S. Tagami, M. Kimura, M. Takechi, M. Fukuda, D. Nishimura, T. Suzuki, T. Matsumoto, Y.R. Shimizu, M. Yahiro. Ground-state properties of neutron-rich Mg isotopes. Phys. Rev. C 89, 044610 (2014).
https://doi.org/10.1103/PhysRevC.89.044610
M.K. Gaidarov, P. Sarriguren, A.N. Antonov, E. Moya de Guerra. Ground-state properties and symmetry energy of neutron-rich and neutron-deficient Mg isotopes. Phys. Rev. C 89, 064301 (2014).
https://doi.org/10.1103/PhysRevC.89.064301
M. Wang, G. Audi, F.G. Kondev, W.J. Huang, S. Naimi, X. Xu. The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 41, 030003 (2017).
https://doi.org/10.1088/1674-1137/41/3/030003
P. Moller, A. Sierk, T. Ichikawa, H. Sagawa. Nuclear ground-state masses and deformations: FRDM (2012). Atom. Data Nucl. Data Tables 109-110, 1 (2016).
https://doi.org/10.1016/j.adt.2015.10.002
G.A. Lalazissis, S. Raman, P. Ring. Ground-State Properties of Even-Even Nuclei in the Relativistic Mean-Field Theory. Atom. Data Nucl. Data Tables 71, 1 (1999).
https://doi.org/10.1006/adnd.1998.0795
http://www-phynu.cea.fr/HFB-Gogny eng.htm.
M. Beiner, H. Flocard, N.V. Giai, P. Quentin. Nuclear ground-state properties and self-consistent calculations with the Skyrme interaction: (I). Spherical description. Nucl. Phys. A 238, 29 (1975).
https://doi.org/10.1016/0375-9474(75)90338-3
J. Bartel, P. Quentin, M. Brack, C. Guet, H.-B. Hakansson. Towards a better parametrization of Skyrme-like effective forces: A critical study of the SkM force. Nucl. Phys. A 386, 79 (1982).
https://doi.org/10.1016/0375-9474(82)90403-1
E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer. A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities. Nucl. Phys. A 635 (1-2), 231 (1998).
https://doi.org/10.1016/S0375-9474(98)00180-8
M. Kortelainen, T. Lesinski, J. More, W. Nazarewicz, J. Sarich, N. Schunck, M.V. Stoitsov, S. Wild. Nuclear energy density optimization. Phys. Rev. C 82, 024313 (2010).
https://doi.org/10.1103/PhysRevC.82.024313
Y. El Bassem, M. Oulne. Hartree-Fock-Bogoliubov calculation of ground state properties of even-even and odd Mo and Ru isotopes. Nucl. Phys. A 957, 22 (2016).
https://doi.org/10.1016/j.nuclphysa.2016.07.005
http://www-nds.iaea.org/RIPL-2/masses/gs-deformations-exp.dat (30/07/2015).
A.H. Taqi, M.A. Hasan. Ground-state properties of eveneven nuclei from He (Z = 2) to Ds (Z = 110) in the framework of Skyrme-Hartree-Fock-Bogoliubov theory. Arab. J. Sci. Eng. (2021).
https://doi.org/10.1007/s13369-021-05345-9
M. Bender, K. Rutz, P.-G. Reinhard, J.A. Maruhn. Pairing gaps from nuclear mean-field models. Eur. Phys. J. A 8, 59 (2000).
https://doi.org/10.1007/s10050-000-4504-z
W. Satula, J. Dobaczewski, W. Nazarewicz. Odd-even staggering of nuclear masses: Pairing or shape effect?. Phys. Rev. Lett 81, 3599 (1998).
https://doi.org/10.1103/PhysRevLett.81.3599
A. Bohr, B.R. Mottelson. Nuclear Structure Volume I: Single-Particle Motion (Wor. Sci. publ. Co. Pte. Ltd, 1998) [ISBN: 9810239793].
https://doi.org/10.1142/3530-vol1
S.J. Krieger, P. Bonche, H. Flocard, P. Quentin, M.S. Weiss. An improved pairing interaction for mean field calculations using skyrme potentials. Nucl. Phys. A 517, 275 (1990).
https://doi.org/10.1016/0375-9474(90)90035-K
S. Cwiok, J. Dobaczewski, P.-H. Heenen, P. Magierski, W. Nazarewicz. Shell structure of the superheavy elements. Nucl. Phys. A 611, 211 (1996).
https://doi.org/10.1016/S0375-9474(96)00337-5
J. Terasaki, H. Flocard, P.-H. Heenen, P. Bonche. Deformation of nuclei close to the two-neutron drip line in the Mg region. Nucl. Phys. A 621, 706 (1997).
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.