Skyrme–Hartree–Fock–Bogoliubov Calculations of Even and Odd Neutron-Rich Mg Isotopes


  • A.H. Taqi Department of Physics, College of Science, Kirkuk University
  • M.A. Hasan Department of Physics, College of Science, Kirkuk University



Hartree–Fock–Bogoliubov theory, Mg isotopes, binding energy, proton and neutron rms radii, quadrupole deformation parameter (B2)


Using the Skyrme functional with SIII, SKM*, SLy4, and UNE0 sets of parameters and the Hartree–Fock–Bogoliubov mean-field method; the ground-state properties of even-even and even-odd neutron-rich Mg isotopes have been investigated. The results of calculations of the binding energy per nucleon (B/A), the one- and two-neutron separation energies (Sn and S2n), proton and neutron rms radii, neutron pairing gap, and quadrupole deformation parameter (B2) have been compared with the available experimental data, the results of Hartree–Fock–Bogoliubov calculations based on the D1S Gogny force, and predictions of some nuclear models such as the Finite Range Droplet Model (FRDM) and Relativistic Mean-Field (RMF) model. Our results show good agreements in comparison with the experimental data and the results of the mentioned models.


F. Chappert, N. Pillet, M. Girod, J.-F. Berger. Gogny force with a finite-range density dependence. Phys. Rev. C 91, 034312 (2015).

R. Rodriguez-Guzman, P. Sarriguren, L.M. Robledo, S. Perez-Martin. Charge radii and structural evolution in Sr, Zr, and Mo isotopes. Phys. Let. B 691, 202 (2010).

W. Nazarewicz, T. R. Werner, J. Dobaczewski. Meanfield description of ground-state properties of drip-line nuclei: Shell-correction method. Phys. Rev. C 50, 2860 (1994).

J. Dobaczewski, W. Nazarewicz, T.R. Werner, J.F. Berger, C.R. Chinn, J. Decharge. Mean-field description of groundstate properties of drip-line nuclei: Pairing and continuum effects. Phys. Rev. C 53, 2809 (1996).

F. Chappert, M. Girod, S. Hilaire. Towards a new Gogny force parametrization: Impact of the neutron matter equation of state. Phys. Lett. B 668, 420 (2008).

I. Hamamoto. Change of shell structure and magnetic moments of odd-N deformed nuclei towards the neutron drip line. J. Phys. G: Nucl. Part. Phys. 37, 055102 (2010).

J.C. Pei, M.V. Stoitsov, G.I. Fann, W. Nazarewicz, N. Schunck, F.R. Xu. Deformed coordinate-space Hartree-Fock-Bogoliubov approach to weakly bound nuclei and large deformations. Phys. Rev. C 78, 064306 (2008).

V.E. Oberacker, A.S. Umar, E. Teran, A. Blazkiewicz. Hartree-Fock-Bogoliubov calculations in coordinate space:

Neutron-rich sulfur, zirconium, cerium, and samarium isotopes. Phys. Rev. C 68, 064302 (2003).

P. Ring, P. Schuck. The Nuclear Many-Body Problem (Springer, 1980) [ISBN: 0-387-09820-8].

M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz, P. Ring. Axially deformed solution of the Skyrme-Hartree-Fock-Bogoliubov equations using the transformed harmonic oscillator basis. The program HFBTHO (v1.66p). Comput. Phys. Commun. 167, 43 (2005).

M.V. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam, E. Olsen, J. Sarich, S. Wild. Axially deformed solution of the Skyrme-Hartree-Fock-Bogoliubov equations using the transformed harmonic oscillator basis (II) HFBTHO v2.00d: A new version of the program. Comput. Phys. Commun. 184, 1592 (2013).

M. Bender, P.-H. Heenen, P.-G. Reinhard. Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75, 121 (2003).

J. Dobaczewski, H. Flocard, J. Treiner. Hartree-FockBogolyubov description of nuclei near the neutron-Drip Line. Nucl. Phys. A 422, 103 (1984).

A. Bulgac. Hartree-Fock-Bogoliubov approximation for finite systems. IPNE FT-194-1980, Bucharest (arXiv: nuclth/9907088) (1980).

J. Bardeen, L.N. Cooper, J.R. Schrieffer. Theory of Superconductivity. Phys. Rev. 108, 1175 (1957).

S. Watanabe, K. Minomo, M. Shimada, S. Tagami, M. Kimura, M. Takechi, M. Fukuda, D. Nishimura, T. Suzuki, T. Matsumoto, Y.R. Shimizu, M. Yahiro. Ground-state properties of neutron-rich Mg isotopes. Phys. Rev. C 89, 044610 (2014).

M.K. Gaidarov, P. Sarriguren, A.N. Antonov, E. Moya de Guerra. Ground-state properties and symmetry energy of neutron-rich and neutron-deficient Mg isotopes. Phys. Rev. C 89, 064301 (2014).

M. Wang, G. Audi, F.G. Kondev, W.J. Huang, S. Naimi, X. Xu. The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 41, 030003 (2017).

P. Moller, A. Sierk, T. Ichikawa, H. Sagawa. Nuclear ground-state masses and deformations: FRDM (2012). Atom. Data Nucl. Data Tables 109-110, 1 (2016).

G.A. Lalazissis, S. Raman, P. Ring. Ground-State Properties of Even-Even Nuclei in the Relativistic Mean-Field Theory. Atom. Data Nucl. Data Tables 71, 1 (1999). eng.htm.

M. Beiner, H. Flocard, N.V. Giai, P. Quentin. Nuclear ground-state properties and self-consistent calculations with the Skyrme interaction: (I). Spherical description. Nucl. Phys. A 238, 29 (1975).

J. Bartel, P. Quentin, M. Brack, C. Guet, H.-B. Hakansson. Towards a better parametrization of Skyrme-like effective forces: A critical study of the SkM force. Nucl. Phys. A 386, 79 (1982).

E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer. A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities. Nucl. Phys. A 635 (1-2), 231 (1998).

M. Kortelainen, T. Lesinski, J. More, W. Nazarewicz, J. Sarich, N. Schunck, M.V. Stoitsov, S. Wild. Nuclear energy density optimization. Phys. Rev. C 82, 024313 (2010).

Y. El Bassem, M. Oulne. Hartree-Fock-Bogoliubov calculation of ground state properties of even-even and odd Mo and Ru isotopes. Nucl. Phys. A 957, 22 (2016). (30/07/2015).

A.H. Taqi, M.A. Hasan. Ground-state properties of eveneven nuclei from He (Z = 2) to Ds (Z = 110) in the framework of Skyrme-Hartree-Fock-Bogoliubov theory. Arab. J. Sci. Eng. (2021).

M. Bender, K. Rutz, P.-G. Reinhard, J.A. Maruhn. Pairing gaps from nuclear mean-field models. Eur. Phys. J. A 8, 59 (2000).

W. Satula, J. Dobaczewski, W. Nazarewicz. Odd-even staggering of nuclear masses: Pairing or shape effect?. Phys. Rev. Lett 81, 3599 (1998).

A. Bohr, B.R. Mottelson. Nuclear Structure Volume I: Single-Particle Motion (Wor. Sci. publ. Co. Pte. Ltd, 1998) [ISBN: 9810239793].

S.J. Krieger, P. Bonche, H. Flocard, P. Quentin, M.S. Weiss. An improved pairing interaction for mean field calculations using skyrme potentials. Nucl. Phys. A 517, 275 (1990).

S. Cwiok, J. Dobaczewski, P.-H. Heenen, P. Magierski, W. Nazarewicz. Shell structure of the superheavy elements. Nucl. Phys. A 611, 211 (1996).

J. Terasaki, H. Flocard, P.-H. Heenen, P. Bonche. Deformation of nuclei close to the two-neutron drip line in the Mg region. Nucl. Phys. A 621, 706 (1997).




How to Cite

Taqi, A., & Hasan, M. (2021). Skyrme–Hartree–Fock–Bogoliubov Calculations of Even and Odd Neutron-Rich Mg Isotopes. Ukrainian Journal of Physics, 66(11), 928.



Fields and elementary particles