Microwave Magnon-Plasmon-Polaritons in the Ferromagnetic Metal–Screened Insulator Structure

Authors

  • V. Yu. Malyshev Taras Shevchenko National University of Kyiv, Faculty of Radiophysics, Electronics, and Computer Systems
  • I. V. Zavislyak Taras Shevchenko National University of Kyiv, Faculty of Radiophysics, Electronics, and Computer Systems
  • G. A. Melkov Taras Shevchenko National University of Kyiv, Faculty of Radiophysics, Electronics, and Computer Systems
  • M. O. Popov Taras Shevchenko National University of Kyiv, Faculty of Radiophysics, Electronics, and Computer Systems
  • O. V. Prokopenko Taras Shevchenko National University of Kyiv, Faculty of Radiophysics, Electronics, and Computer Systems

DOI:

https://doi.org/10.15407/ujpe65.10.939

Keywords:

magnon, plasmon, polariton, ferromagnetic metal, surface electromagnetic wave resonator, microwave frequency range

Abstract

A possibility for surface magnon–plasmon–polaritons (SMPPs)–coupled microwave oscillations of magnetization, electron density, and electromagnetic field–to exist in real ferromagnetic metal–insulator–ideal non-magnetic metal structures has been analyzed theoretically. The developed theory predicts that the effective formation of SMPPs is possible only at certain values of the external dc magnetic field and must be accompanied by a shift in the characteristic frequency of the resonance plasmon-polariton systems. A theoretical estimation of the frequency shift for SMPPs in the structure “surface electromagnetic wave resonator made of permalloy–vacuum–ideal metal” gives a value of ±45 MHz for a resonator with a characteristic frequency of 10 GHz, which seems sufficient for this effect to be observed experimentally.

References

A.M. Pogorilyi, S.M. Ryabchenko, O.I. Tovstolytkin. Spintronics. Main phenomena. Development trends. Ukr. Fiz. Zh. Oglyad. 6, 37 (2010) (in Ukrainian).

A. Sommerfeld. ¨ Uber die Fortpflanzung elektrodynamischer Wellen l¨angs eines Drahtes. Ann. Phys. Chem. 303, 233 (1899). https://doi.org/10.1002/andp.18993030202

J. Zenneck. ¨ Uber die Fortpflanzung ebener elektromagnetischer Wellen l¨angs einer ebenen Leiterfl¨ache und ihre Beziehung zur drahtlosen Telegraphie. Ann. Phys. 328, 846 (1907). https://doi.org/10.1002/andp.19073281003

Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces. Edited by V.M. Agranovich, D.L. Mills (North-Holland, 1982).

E.L. Albuquerque, M.G. Cottam. Polaritons in Periodic and Quasiperiodic Structures (Elsevier, 2004). https://doi.org/10.1016/B978-044451627-5/50003-1

G.A. Melkov, Y.V. Egorov, O.M. Ivanyuta, V.Y. Malyshev, H.K. Zeng, Kh. Wu, J.Y. Juang. HTS surface wave resonators. J. Supercond. 13, 95 (2000). https://doi.org/10.1023/A:1007734428003

G.A. Melkov, A.V. Prokopenko, V.N. Raksha. Rarefaction of the natural oscillation spectrum of a surface wave resonator. Radioelectr. Commun. Syst. 47, 20 (2004).

G.A. Melkov, O.M. Ivanyuta, O.V. Prokopenko, V.M. Raksha, A.M. Klushin, M. Siegel. Embedding of Josephson junctions in the surface wave resonator in the Kaband. In: Proceedings of the 4th International Khar'kov Symposium "Physics and Engineering of Millimeter and Sub-Millimeter Waves" (MSMW'2001, 4-9 June 2001, Khar'kov, Ukraine) (2001), Vol. 1, p. 363.

G.A. Melkov, A.M. Klushin, O.D. Poustylnik, O.V. Prokopenko, V.M. Raksha. Irradiation of HTS Josephson junctions with the surface wave resonator. In: Proceedings of the 5th International Khar'kov Symposium "Physics and Engineering of Millimeter and Sub-Millimeter Waves" (MSMW'2004, 21-26 June 2004, Khar'kov, Ukraine) (2004), Vol 2, p. 128.

O.M. Ivanyuta, O.V. Prokopenko, V.M. Raksha, A.M. Klushin. Microwave detection using Josephson junction arrays integrated in a resonator. Phys. Status Solidi C 2, 1688 (2005). https://doi.org/10.1002/pssc.200460812

O.M. Ivanyuta, O.V. Prokopenko, Ya.I. Kishenko, V.M. Raksha, A.M. Klushin. The effect of the external magnetic field on the current-voltage characteristic of HTS Josephson junction arrays. J. Low Temp. Phys. 139, 97 (2005). https://doi.org/10.1007/s10909-005-3915-2

O.V.Prokopenko,D.A.Bozhko,V.S.Tyberkevych,A.V.Chumak, V.I.Vasyuchka, A.A. Serga, O.Dzyapko, R.V.Verba, A.V.Talalaevskij, D.V. Slobodianiuk, Yu.V.Kobljanskyj, V.A.Moiseienko, S.V. Sholom, V.Yu.Malyshev. Recent trends in microwave magnetism and superconductivity. Ukr. J. Phys. 64, 888 (2019). https://doi.org/10.15407/ujpe64.10.888

V. Malyshev, G. Melkov, O. Prokopenko. Microwave devices based on superconducting surface electromagnetic wave resonator (Review Article). Fiz. Nizk. Temp. 46, 422 (2020). https://doi.org/10.1063/10.0000866

R.H. Ritchie. Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874 (1957). https://doi.org/10.1103/PhysRev.106.874

E. ¨ Ozbay. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311, 189 (2006). https://doi.org/10.1126/science.1114849

S.A. Maier. Plasmonics: Fundamentals and Applications (Springer, 2007). https://doi.org/10.1007/0-387-37825-1

Plasmonics: From Basics to Advanced Topics. Edited by S. Enoch, N. Bonod (Springer, 2012).

R.S. Anwar, H. Ning, L. Mao. Recent advancements in surface plasmon polaritons-plasmonics in subwavelength structures in microwave and terahertz regimes. Digit. Commun. Netw. 4, 244 (2018). https://doi.org/10.1016/j.dcan.2017.08.004

Surface Electromagnetics: With Applications in Antenna, Microwave, and Optical Engineering. Edited by F. Yang, Y. Rahmat-Samii (Cambridge Univ. Press, 2019).

X. Zhang, Q. Xu, L. Xia, Y. Li, J. Gu, Z. Tian, C. Ouyang, J. Han, W. Zhang. Terahertz surface plasmonic waves: a review. Adv. Photon. 2, 014001 (2020). https://doi.org/10.1117/1.AP.2.1.014001

N. Maccaferri, I. Zubritskaya, I. Razdolski, I.-A. Chioar, V. Belotelov, V. Kapaklis, P.M. Oppeneer, A. Dmitriev. Nanoscale magnetophotonics. J. Appl. Phys. 127, 080903 (2020). https://doi.org/10.1063/1.5100826

R. Ruppin. Surface polaritons of a left-handed medium. Phys. Lett. A 277, 61 (2000). https://doi.org/10.1016/S0375-9601(00)00694-0

R. Ruppin. Surface polaritons of a left-handed material slab. J. Phys.: Condens. Matter 13, 1811 (2001). https://doi.org/10.1088/0953-8984/13/9/304

Y.V. Bludov, J.N. Gomes, G.A. Farias, J. Fern'andez-Rossier, M.I. Vasilevskiy, N.M.R. Peres. Hybrid plasmon-magnon polaritons in graphene-antiferromagnet heterostructures. 2D Mater. 6, 045003 (2019). https://doi.org/10.1088/2053-1583/ab2513

J. Sloan, N. Rivera, J.D. Joannopoulos, I. Kaminer, M. Soljaˇci'c. Controlling spins with surface magnon polaritons. Phys. Rev. B 100, 235453 (2019). https://doi.org/10.1103/PhysRevB.100.235453

V.V. Temnov, G. Armelles, U.Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, R. Bratschitsch. Active magnetoplasmonics in hybrid metal-ferromagnet structures. Nature Photon. 4, 107 (2010). https://doi.org/10.1038/nphoton.2009.265

D. Mart'ın Becerra. Active Plasmonic Devices Based on Magnetoplasmonic Nanostructures (Springer, 2017). https://doi.org/10.1007/978-3-319-48411-2

G.T. Papadakis, D. Fleischman, A. Davoyan, P. Yeh, H.A. Atwater. Optical magnetism in planar metamaterial heterostructures. Nature Commun. 9, 296 (2018). https://doi.org/10.1038/s41467-017-02589-8

I. Zavislyak, H. Chumak. Magnon-plasmon polaritons in the layered structure metal-ferrite with a periodic stripe-like structure of domains. Ukr. J. Phys. 64, 956 (2019). https://doi.org/10.15407/ujpe64.10.956

S. Ramo, J. R. Whinnery, T. Van Duzer. Fields and Waves in Communication Electronics. (Wiley, 1994).

C. Kittel. Introduction to Solid State Physics (Wiley, 2004).

J. Lindhard. On the properties of a gas of charged particles. Mat. Fys. Medd. Dan. Vid. Selsk. 28, 1 (1954).

A.G. Gurevich, G.A. Melkov. Magnetization Oscillations and Waves (CRC Press, 1996).

M.A. Ordal, R.J. Bell, R.W. Alexander, Jr, L.L. Long, M.R. Querry. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Opt. 24, 4493 (1985). https://doi.org/10.1364/AO.24.004493

Published

2020-10-09

How to Cite

Malyshev, V. Y., Zavislyak, I. V., Melkov, G. A., Popov, M. O., & Prokopenko, O. V. (2020). Microwave Magnon-Plasmon-Polaritons in the Ferromagnetic Metal–Screened Insulator Structure. Ukrainian Journal of Physics, 65(10), 939. https://doi.org/10.15407/ujpe65.10.939

Issue

Section

Physics of magnetic phenomena and physics of ferroics