Influence of Nanosize Effect and Non-Magnetic Dilution on Interlayer Exchange Coupling in Fe–Cr/Cr Nanostructures


  • D. M. Polishchuk Nanostructure Physics, Royal Institute of Technology, Institute of Magnetism, Nat. Acad. of Sci. of Ukraine
  • M. M. Kulyk Nanostructure Physics, Royal Institute of Technology, Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • E. Holmgren Nanostructure Physics, Royal Institute of Technology
  • G. Pasquale Nanostructure Physics, Royal Institute of Technology
  • A. F. Kravets Institute of Magnetism, Nat. Acad. of Sci. of Ukraine and Ministry of Education and Science of Ukraine
  • V. Korenivski Nanostructure Physics, Royal Institute of Technology



ferromagnetic film, multilayered nanostructure, size effect, interlayer exchange coupling, dilute ferromagnetic alloy


Magnetic properties of multilayered [Fe–Cr/Cr]×8 nanostructures with the interlayer exchange coupling of the antiferromagnetic type and without the interlayer coupling have been studied. The values of the saturation magnetization and the interlayer exchange coupling constant are shown to strongly depend on the thickness and non-magnetic dilution of the Fe–Cr layers. It is found that those parameters differently affect the interlayer exchange coupling, which is explained by an interplay between the size effect (the thickness of the Fe–Cr layers) and the magnetic polarization of the Fe–Cr/Cr interfaces depending on the Fe concentration.


P. Gr¨unberg et al. Layered magnetic structures: Evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. J. Appl. Phys. 61, 3750 (1986).

M.N. Baibich et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472 (1988).

G. Binasch, P. Gr¨unberg, F. Saurenbach, W. Zinn. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828 (1989).

P. Gr¨unberg. Layered magnetic structures: History, highlights, applications. Phys. Today 54, 31 (2001).

I. ˇ Zuti'c, J. Fabian, S. Das Sarma. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004).

J. Sinova, I. ˇ Zuti'c. New moves of the spintronics tango. Nat. Mater. 11, 368 (2012).

P. Bruno. Interlayer exchange coupling: A unified physical picture. J. Magn. Magn. Mater. 121, 248 (1993).

M.D. Stiles. Exchange coupling in magnetic heterostructures. Phys. Rev. B 48, 7238 (1993).

L. N'eel. Magnetisme-sur un nouveau mode de couplage entre les animantations de deux couches minces ferromagnetiques. Compt. Rend. 255, 1676 (1962).

J.C.S. Kools, W. Kula, D. Mauri, T. Lin. Effect of finite magnetic film thickness on N'eel coupling in spin valves. J. Appl. Phys. 85, 4466 (1999).

S.S.P. Parkin, N. More, K.P. Roche. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys. Rev. Lett. 64, 2304 (1990).

S.S.P. Parkin, R.Bhadra, K.P. Roche. Oscillatory magnetic exchange coupling through thin copper layers. Phys. Rev. Lett. 66, 2152 (1991).

S. Bandiera et al. Comparison of synthetic antiferromagnets and hard ferromagnets as reference layer in magnetic tunnel junctions with perpendicular magnetic anisotropy. IEEE Magn. Lett. 1, 3000204 (2010).

Y.-C. Lau, D. Betto, K. Rode, J.M.D. Coey, P. Stamenov. Spin-orbit torque switching without an external field using interlayer exchange coupling. Nat. Nanotechnol. 11, 758 (2016).

T. Newhouse-Illige et al. Voltage-controlled interlayer coupling in perpendicularly magnetized magnetic tunnel junctions. Nat. Commun. 8, 15232 (2017).

J.G. Zhu. Spin valve and dual spin valve heads with synthetic antiferromagnets. IEEE Trans. Magn. 35, 655 (1999).

S. Parkin et al. Magnetically engineered spintronic sensors and memory. Proc. IEEE 91, 661 (2003).

J.M. Slaughter et al. Fundamentals of MRAM technology. J. Supercond. 15, 19 (2002).

A. Bergman et al. Ultrafast switching in a synthetic antiferromagnetic magnetic random-access memory device. Phys. Rev. B 83, 224429 (2011).

D. Apalkov, B. Dieny, J.M. Slaughter. Magnetoresistive random access memory. Proc. IEEE 104, 1796 (2016).

R.A. Duine, K.-J. Lee, S.S.P. Parkin, M.D. Stiles. Synthetic antiferromagnetic spintronics. Nat. Phys. 14, 217 (2018).

E.V. Gomonay, V.M. Loktev. Spintronics of antiferromagnetic systems (Review Article). Low Temp. Phys. 40, 17 (2014).

V. Baltz et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

K.M. D¨obrich et al. Temperature-induced reversal of magnetic interlayer exchange coupling. Phys. Rev. Lett. 100, 227203 (2008).

Z.Y. Liu et al. Thermally induced antiferromagnetic interlayer coupling and its oscillatory dependence on repetition number in spin-valve Co/Pt multilayers. J. Phys. D 42, 035010 (2009).

T. Mukherjee, S. Sahoo, R. Skomski, D.J. Sellmyer, C. Binek. Magnetocaloric properties of Co/Cr superlattices. Phys. Rev. B 79, 144406 (2009).

Magnetic Properties of Metals. Edited by H.P.J. Wijn (Springer, 1991).

D.M. Polishchuk, Y.O. Tykhonenko-Polishchuk, E. Holmgren, A.F. Kravets, V. Korenivski. Thermally induced antiferromagnetic exchange in magnetic multilayers. Phys. Rev. B 96, 104427 (2017).

D.M. Polishchuk et al. Giant magnetocaloric effect driven by indirect exchange in magnetic multilayers. Phys. Rev. Mater. 2, 114402 (2018).

A.F. Kravets et al. Temperature-controlled interlayer exchange coupling in strong/weak ferromagnetic multilayers: A thermomagnetic Curie switch. Phys. Rev. B 86, 1 (2012).

Z. Zhang, L. Zhou, P.E. Wigen, K. Ounadjela. Angular dependence of ferromagnetic resonance in exchange-coupled Co/Ru/Co trilayer structures. Phys. Rev. B 50, 6094 (1994).

C.M. Schneider et al. Curie temperature of ultrathin films of fcc-cobalt epitaxially grown on atomically flat Cu(100) surfaces. Phys. Rev. Lett. 64, 1059 (1990).

F. Huang, M.T. Kief, G.J. Mankey, R.F.Willis. Magnetism in the few-monolayers limit: A surface magneto-optic Kerr-effect study of the magnetic behavior of ultrathin films of Co, Ni, and Co-Ni alloys on Cu(100) and Cu(111). Phys. Rev. B 49, 3962 (1994).

P. Bruno. Theory of interlayer magnetic coupling. Phys. Rev. B 52, 411 (1995).

S.S. Parkin. Dramatic enhancement of interlayer exchange coupling and giant magnetoresistance in Ni81Fe19/Cu multilayers by addition of thin Co interface layers. Appl. Phys. Lett. 61, 1358 (1992).



How to Cite

Polishchuk, D. M., Kulyk, M. M., Holmgren, E., Pasquale, G., Kravets, A. F., & Korenivski, V. (2020). Influence of Nanosize Effect and Non-Magnetic Dilution on Interlayer Exchange Coupling in Fe–Cr/Cr Nanostructures. Ukrainian Journal of Physics, 65(10), 898.



Physics of magnetic phenomena and physics of ferroics

Most read articles by the same author(s)