Giant Magnetoelectric Response in Multiferroics with Coexistence of Superparamagnetic and Ferroelectric Phases at Room Temperature

Authors

  • M. D. Glinchuk Institute for Problems of Materials Science, Nat. Acad. of Sci. of Ukraine
  • R. P. Yurchenko Institute for Problems of Materials Science, Nat. Acad. of Sci. of Ukraine
  • V. V. Laguta Institute for Problems of Materials Science, Nat. Acad. of Sci. of Ukraine, Institute of Physics AS CR

DOI:

https://doi.org/10.15407/ujpe65.10.875

Keywords:

multiferroics, magnetoelectrics effect, ferroelectrics, superparamagnetism, solid solutions

Abstract

Multiferroics are materials having two or more order parameters (for instance, magnetic, electric, or elastic) coexisting in the same phase. They have emerged as an important topic in condensed matter physics due to both their intriguing physical behaviors and a broad variety of novel physical applications they enable. Here, we report the results of comprehensive studies of the magnetoelectric (ME) effect in multiferroics with superparamagnetic and ferroelectric phases. On the example of a solid solution of PbFe1/2Ta1/2O3 with (PbMg1/3Nb2/3O3)0.7(PbTiO3)0.3 or Pb(ZrTi)O3, we demonstrate that, in the system with the coexistent superparamagnetic and ferroelectric phases, the ME coefficient can be increased up to three orders in magnitude as compared to conventional magnetoelectrics. This is supported by both theoretical calculations and direct measurements of the ME coefficient. Our study demonstrates that multiferroics with superparamagnetic and ferroelectric phases can be considered as promising materials for applications along with composite multiphase (ferroelectric/ferromagnetic) structures.

References

A.P. Pyatakov, A.K. Zvezdin. Magnetoelectric and multiferroic media. Physics - Uspekhi 55, 557 (2012). https://doi.org/10.3367/UFNe.0182.201206b.0593

M.D. Glinchuk, R.O. Kuzian, Yu.O. Zagorodniy, I.V. Kondakova, V.M. Pavlikov, M.V. Karpec, M.M. Kulik, S.D. Skapin, L.P. Yurchenko, V.V. Laguta. Room-temperature ferroelectricity, superparamagnetism and large magnetoelectricity of solid solution PbFe1/2Ta1/2O3 with (PbMg1/3Nb2/3O3)0.7(PbTiO3)0.3. J. Mat. Sci. 55, 1399 (2020). https://doi.org/10.1007/s10853-019-04158-4

F. Wiekhorst, E. Shevchenko, H. Weller, J. Kotzler. Anisotropic superparamagnetism of monodispersive cobalt-platinum nanocrystals. Phys. Rev. B 67, 224416 (2003). https://doi.org/10.1103/PhysRevB.67.224416

V.M. Fedosyuk, A.M. Danishevskiframe, D.A. Kurdyukov, V.B. Shuman, S.K. Gordeev. Magnetic properties of nickel clusters in nanoporous carbon. Physica of Solid State 45, 9, 1750 (2003). https://doi.org/10.1134/1.1611245

D.A. Sanchez, N. Ortega, A. Kumar, R. Roque-Malherbe, R. Polanco, J.F. Scott, R.S. Katiyar. Symmetries and multiferroic properties of novel room-temperature magnetoelectrics: Lead iron tantalate-lead zirconate titanate (PFT/PZT). AIP Advances 1, 042169 (2011). https://doi.org/10.1063/1.3670361

M.D. Glinchuk, E.A. Eliseev, A.N. Morozovska. Landau-Ginzburg description of anomalous properties of novel room temperature multiferroics Pb(Fe1/2Ta1/2)x(Zr0.53Ti0.47)1−xO3 and Pb(Fe1/2Nb1/2)x(Zr0.53Ti0.47)1−xO3. J. Appl. Phys. 119, 024102 (2016). https://doi.org/10.1063/1.4939584

M.D. Glinchuk, E.A. Eliseev, A.N. Morozovska, R. Blinc. Giant magnetic effect induced by intrinsic surface stress in ferroic nanorods. Phys. Rev. B 77, 024106 (2008). https://doi.org/10.1103/PhysRevB.77.024106

S.L. Hou, N. Bloembergen. Paramagnetoelectric effects in NiSO4· 6H2O. Phys. Rev. 138, A1218 (1965). https://doi.org/10.1103/PhysRev.138.A1218

T. Watanabe, K. Kohn. Magnetoelectric effect and low temperature transition of PbFe0.5Nb0.5O3 single crystal. Phase Transitions 15, 57 (1989). https://doi.org/10.1080/01411598908206837

M. Fiebig. Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R123 (2005). https://doi.org/10.1088/0022-3727/38/8/R01

V.V. Laguta, A.N. Morozovska, E.A. Eliseev, I.P. Raevski, S.I. Raevskaya, E.I. Sitalo, S.A. Prosandeev, L. Bellaiche. Room-temperature paramagnetoelectric effect in magnetoelectric multiferroics Pb(Fe1/2Nb1/2)O3 and its solid solution with PbTiO3. J. Mat. Sci. 51, 5330 (2016). https://doi.org/10.1007/s10853-016-9836-4

C.M. Hurd. Varieties of magnetic order in solids. Contemporary Physics 23, 469 (1982). https://doi.org/10.1080/00107518208237096

D.A. Sanchez, N. Ortega, A. Kumar, G. Sreenivasulu, R.S. Katiyar, J.F. Scott, D.M. Evans, M. Arredondo-Arechavala, A. Schilling, J.M. Gregg. Room-temperature single phase multiferroic magnetoelectrics: Pb(Fe,M)x(Zr,Ti)(1−x)O3 [M = Ta, Nb]. J Appl. Phys. 113, 074105 (2013). https://doi.org/10.1063/1.4790317

V.V. Laguta, V.A. Stephanovich, I.P. Raevski, S.I. Raevskaya, V.V. Titov, V.G. Smotrakov, V.V. Eremkin. Magnetoelectric effect in antiferromagnetic multiferroic Pb(Fe1/2Nb1/2)O3 and its solid solutions with PbTiO3. Phys. Rev. B 95, 014207 (2017). https://doi.org/10.1103/PhysRevB.95.014207

D.M. Evans, A. Schilling, A. Kumar, D. Sanchez, N. Ortega, M. Arredondo, R.S. Katiyar, J.M. Gregg, J.F. Scott. Magnetic switching of ferroelectric domains at room temperature in multiferroic PZTFT. Nature Communications 4, 1534 (2013). https://doi.org/10.1038/ncomms2548

D.M. Evans, A. Schilling, A. Kumar, D. Sanchez, N. Ortega, R.S. Katiyar, J.F. Scott, J.M. Gregg. Switching ferroelectric domain configurations using both electric and magnetic fields in Pb(Zr,Ti)O3-Pb(Fe,Ta)O3 single-crystal lamellae. Phil. Trans. R. Soc. A 372, 20120450 (2014). https://doi.org/10.1098/rsta.2012.0450

J.A. Lopez-Perez, M.A. Lopez Quintela, J. Mira, J. Rivas, S.W. Charles. Advances in the preparation of magnetic nanoparticles by the microemulsion method. J. Phys. Chem. B 101, 8045 (1997). https://doi.org/10.1021/jp972046t

Downloads

Published

2020-10-09

How to Cite

Glinchuk, M. D., Yurchenko, R. P., & Laguta, V. V. (2020). Giant Magnetoelectric Response in Multiferroics with Coexistence of Superparamagnetic and Ferroelectric Phases at Room Temperature. Ukrainian Journal of Physics, 65(10), 875. https://doi.org/10.15407/ujpe65.10.875

Issue

Section

Physics of magnetic phenomena and physics of ferroics