Magnetization and Magnetocaloric Effect in Antiferromagnets with Competing Ising Exchange and Single-Ion Anisotropies


  • V. M. Kalita National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Institute of Physics, Nat. Acad. of Sci. of Ukraine, Institute of Magnetism, Nat. Acad. of Sci. of Ukraine and Ministry of Education and Science of Ukraine
  • G. Yu. Lavanov National Aviation University
  • V. M. Loktev National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine



phase transitions of the first kind, antiferromagnet, Ising model, easy-plane single-ion anisotropy, magnetocaloric effect


The magnetization of a two-sublattice Ising antiferromagnet with easy-plane single-ion anisotropy, which is accompanied by two phase transitions, has been studied. The both phase transitions are induced by the magnetic field. One of them is isostructural, i.e., the system symmetry remains unchanged and a transition between two antiferromagnetic states with different sublattice magnetizations takes place. The other phase transition occurs when the antiferromagnetic state transforms into the ferromagnetic one. At both phase transitions, the field dependence of the system entropy has two successive positive jumps, which is not typical of ordinary antiferromagnets. On the other hand, if the temperature of the system is higher than the tricritical temperature of the isostructural phase transition, there appears a continuous maximum in the field dependence of the entropy.


I.S. Jacobs. Spin-flopping in MnF2 by high magnetic fields. J. Appl. Phys. 32, S61 (1961).

I.S. Jacobs, P.E. Lawrence. Metamagnetic phase transition and hysteresis in FeCl2. Phys. Rev. 164, 866 (1967).

J.M. Kincaid, E.G.D. Cohen. Phase diagrams of liquid helium mixtures and metamagnets: experiment and mean field theory. Phys. Rep. 22, 57 (1975).

E. Stryjewski, N. Giordano. Metamagnetism. Adv. Phys. 26, 487 (1977).

G.A. Candela, L.J. Swartzendruber, J.S. Miller, M.J. Rice. Metamagnetic properties of one-dimensional decamethylferrocenium 7,7,8,8-tetracyano-p-quinodimethanide (1 : 1) : [Fe(n5·C5Me5)2]+(TCNQ)−. J. Am. Chem. Soc. 101, 2755 (1979).

M. Roger, J.H. Hetherington, J.M. Delrieu. Magnetism in solid He3. Rev. Mod. Phys. 55, 1 (1983).

T.T.M.Palstra,G.J.Nieuwenhuys, J.A.Mydosh,K.H.J.Buschow. Micromagnetic, ferromagnetic, and antiferromagnetic transitions in La(FexAl1−x)13 intermetallic compounds. Phys. Rev. B 31, 4622 (1985).

V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, Y. Tserkovnyak. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

A.S. Borovik-Romanov. Antiferromagnetism (Itogi Nauki, Izd-vo AN SSSR, 1962) (in Russian).

A.F. Lozenko, V.I. Malinovskii, S.M. Ryabchenko. High-frequency antiferromagnetic resonance in anhydrous NiCl2. Sov. Phys. JETP 33, 750 (1971).

A.F. Lozenko, S.M. Ryabchenko. Antiferromagnetic resonance in layered CoCl2 and NiCl2 crystals. Sov. Phys. JETP 38, 538 (1974).

A.F. Lozenko, P.E. Parkhomchuk, S.M. Ryabchenko, P.A. Trotsenko. Anomalous magnetostriction in the layered antiferromagnet MnCl2. J. Exp. Theor. Phys. 89, 1237 (1985).

V.M. Kalita, A.F. Lozenko, S.M. Ryabchenko. Analysis of the temperature-field dependence of the magnetostriction in the antiferromagnetic phase of the easy-plane antiferromagnet CoCl2. Low Temp. Phys. 26, 489 (2000).

V.M. Kalita, A.F. Lozenko, S.M. Ryabchenko, P.A. Trotsenko. The role of defects in the formation of the multidomain state of easy-plane antiferromagnets with magnetoelastic interaction. J. Exp. Theor. Phys. 99, 1054 (2004).

V.M. Kalita, A.F. Lozenko, S.M. Ryabchenko, P.A. Trotsenko. Magnetoelasticity and domain structure in antiferromagnetic crystals of the iron-group dihalides. Low Temp. Phys. 31, 794 (2005).

T. Oguchi. Theory of magnetism in CoCl2·2H2O. J. Phys. Soc. Jpn. 20, 2236 (1965).

K. Katsumata. Metamagnetic phase transition and anomalous hysteresis in FeCl2·2H2O. J. Phys. Soc. Jpn. 39, 42 (1975).

J. Hirte, H. Weitzel, N. Lehner. Critical behavior and critical endpoints of FeCl2·2H2O and CoCl2·2H2O in an applied magnetic field. Phys. Rev. B 30, 6707 (1984).

G.C. DeFotis, B. Lee, H.A. King, J. Hammann. Magnetization and susceptibility of FeCl2·H2O. J. Magn. Magn. Mater. 177, 173 (1998).

Y. Narumi, K. Katsumata, T. Nakamura, Y. Tanaka, S. Shimomura, T. Ishikawa, M. Yabashi. The coexistence of magnetic phases at the first-order phase transition of a metamagnet FeCl2·2H2O studied by x-ray diffraction. J. Phys. Condens. Matter 16, L57 (2004).

A.K. Zvezdin, V.M. Matveev, A.A. Mukhin, A.I. Popov. Rare-Earth Ions in Magnetically Ordered Crystsals (Nauka, 1985) (in Russian).

M.F. Collins, O.A. Petrenko. Triangular antiferromagnets. Can. J. Phys. 75, 605 (1997).

V.M. Kalita, V.M. Loktev. On the sequence of quantum (meta) magnetic transitions in Ising antiferromagnets with single-ion anisotropy. Low Temp. Phys. 31, 619 (2005).

D.P. Landau. Magnetic tricritical points in Ising antiferromagnets. Phys. Rev. Lett. 28, 449 (1972).

W. Selke. Anomalies in Ising metamagnets. Z. Phys. B 101, 145 (1996).

E.S. Tsuvarev, F.A. Kassan-Ogly, A.I. Proshkin. Ordering and frustrations in generalized Ising chain. J. Phys. Conf. Ser. 1389, 012008 (2019).

T. Nagamiya, K. Yosida, R. Kubo. Antiferromagnetism. Adv. Phys. 42, No. 13, 1 (1955).

A.R. Fert, P. Carrara, M.C. Lanusse, G. Mischler, J.P. Redoules. Transition de phase metamagnetique du bromure ferreux. J. Phys. Chem. Solids 34, 223 (1973).

V.M. Loktev, V.S. Ostrovskii. The peculiarities of statics and dynamics of magnetic insulators with single-ion anisotropy. Fiz. Nizk. Temp. 20, 983 (1994).

V.G. Baryakhtar, I.N. Vitebskii, D.A. Yablonskii. To the theory of metamagnetic phase transitions. Sov. Phys. Solid State 19, 1249 (1977).

K. Katsumata, H. Aruga Katori, S.M. Shapiro, G. Shirane. Neutron-scattering studies of a phase transition in the metamagnet FeBr2 under external magnetic fields. Phys. Rev. B 55, 11466 (1997).

G.Yu. Lavanov, V.M. Kalita, V.M. Loktev. Isostructural magnetic phase transitions and the magnetocaloric effect in Ising antiferromagnets. Low Temp. Phys. 40, 1053 (2014).

G.Y. Lavanov, V.M. Kalita, I.M. Ivanova, V.M. Loktev. Magnetic quantum phase transitions and entropy in Van Vleck magnet. J. Magn. Magn. Mater. 416, 466 (2016).

T.I. Lyashenko, V.M. Kalita, V.M. Loktev. Effect of the exchange interaction anisotropy on the magnetic quantum phase transitions in dimerized antiferromagnets. Low Temp. Phys. 43, 1002 (2017).

V.M. Kalita, I.M. Ivanova, V.M. Loktev. Quantum effects of magnetization of an easy-axis ferromagnet with S = 1. Theor. Math. Phys. 173, 1620 (2012).

Ph.N. Klevets, O.A. Kosmachev, Yu.A. Fridman. Phase transitions in S = 1 antiferromagnet with Ising-like exchange interaction and strong easy-plane single-ion anisotropy. J. Magn. Magn. Mater. 330, 91 (2013).

O.A. Kosmachev, Y.A. Fridman, B.A. Ivanov. Phase states of a magnetic material with the spin S = 2 and the isotropic exchange interaction. JETP Lett. 105, 453 (2017).

A.G. Meleshko, P.N. Klevets, G.A. Gorelikov, O.A. Kosmachev, Y.A. Fridman. Supersolid magnetic phase in the two-dimensional Ising-like antiferromagnet with strong single-ion anisotropy. Phys. Solid State 59, 1739 (2017).



How to Cite

Kalita, V. M., Lavanov, G. Y., & Loktev, V. M. (2020). Magnetization and Magnetocaloric Effect in Antiferromagnets with Competing Ising Exchange and Single-Ion Anisotropies. Ukrainian Journal of Physics, 65(10), 858.



Physics of magnetic phenomena and physics of ferroics

Most read articles by the same author(s)

1 2 > >>