Recovery of Parameters for the Multimodal Aerosol Com-ponent in the Atmosphere from Spectral Polarimetric Measurements
DOI:
https://doi.org/10.15407/ujpe66.6.466Keywords:
atmosphere, degree of linear polarization, aerosol, recovery of parametersAbstract
A method for detecting the major aerosol modes in an atmospheric column and recovering the probable values of the microphysical parameters of their particles from the spectral phase dependences of the sky linear polarization degree has been proposed. A test processing of sky polarization measurements over the location site of the Main Astronomical Observatory of the National Academy of Sciences of Ukraine (Golosiiv, Kyiv) is performed. Two major, coarse and fi ne, aerosol modes are found in the city atmosphere. The microphysical parameters of those modes are determined assuming the normal-logarithmic distribution function for the particle sizes.
References
Air quality in Europe - 2019 report. EEA Report No. 10/2019 (2019).
E. Strukova, A. Golub, A. Markandya. Air pollution costs in Ukraine. Environ. Econom. 2, Iss. 3, 52 (2011).
F. Karagulian, M. Gerboles, M. Barbiere, A. Kotsev, F. Lagler, A. Borowiak. Review of Sensors for Air Quality Monitoring (Publications Offi ce of the European Union, 2019).
D. Huige, W. Qiyu, H. Hangbo, L. Siwen, Y. Qing, L. Jingjing, S. Yuehui, H. Dengxin. Aerosol microphysical particle parameter inversion and error analysis based on remote sensing data. Comput. Sci. Geol.-Remote Sens. 10, 1753 (2018).
https://doi.org/10.3390/rs10111753
I. Veselovskii, D.N. Whiteman, M. Korenskiy, A. Suvorina, D. P'erez-Ram'ırez. Use of rotational Raman measurements in multiwavelength aerosol lidar for evaluation of particle backscattering and extinction. Atmos. Meas. Tech. 8, 4111 (2015).
https://doi.org/10.5194/amt-8-4111-2015
W.H. Johnathan, A.H. Chris, L.C. Anthony, B.H. David, A.F. Richard, L.M. Terry, W. Wayne, R.I. Luis, E.H. Floyd. Airborne High Spectral Resolution Lidar for profi ling aerosol optical properties. Appl. Opt. 47, 6734 (2008).
https://doi.org/10.1364/AO.47.006734
D. Huige, H. Hua, Y. Cui, D. Hua, T. He, Y. Wang, Q. Yan. Vertical distribution of optical and microphysical properties of smog aerosols measured by multi-wavelength polarization lidar in Xi'an, China. J. Quant. Spectrosc. Radiat. Transf. 188, 28 (2017).
https://doi.org/10.1016/j.jqsrt.2016.05.027
Z. Shuang, W. Jian, F. Wenxuan, Y. Qidong, Z. Deming. Review of aerosol optical depth retrieval using visibility data. Earth-Sci. Rev. 200, 102986 (2020).
https://doi.org/10.1016/j.earscirev.2019.102986
I. Veselovskii, O. Dubovik, A. Kolgotin, T. Lapyonok, P. Girolamo, D. Summary, D.N. Whiteman, M. Mishchenko, D. Tanr'e. Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwave-
length lidar measurements. J. Geophys. Res. 115, D21203 (2010).
A.K. Jagodnicka, T. Stacewicz, G. Karasi'n ski, M. Posyniak, S.P. Malinowski. Particle size distribution retrieval
from multiwavelength lidar signals for droplet aerosol. Appl. Opt. 48, B8 (2009).
https://doi.org/10.1364/AO.48.0000B8
A. Lopatin, O. Dubovik, A. Chaikovsky et al. Enhancement of aerosol characterization using synergy of lidar and
sun-photometer coincident observations: The GARRLiC algorithm. Atmos. Meas. Techn. 8, 2065 (2013).
J.E. Hansen, J.M. Hovenier. Interpretation of the polarization of Venus. J. Atmos. Sci. 31, 1137 (1974).
https://doi.org/10.1175/1520-0469(1974)031<1137:IOTPOV>2.0.CO;2
A.V. Morozhenko, E.G. Yanovitskij. The optical properties of Venus and Jovian planets. I. The Atmosphere of Jupiter according to polarimetric observations. Icarus 18, 583 (1973).
https://doi.org/10.1016/0019-1035(73)90060-2
J.M. Dlugach, M.I. Mishchenko. Photopolarimetry of planetary atmospheres: what observational data are essential for a unique retrieval of aerosol microphysics? Mon. Not. R. Astron. Soc. 384, 64 (2008).
https://doi.org/10.1111/j.1365-2966.2007.12679.x
J.M. Dlugach, M.I. Mishchenko. The eff ect of particle shape on microphysical properties of Jovian aerosols retrieved from ground-based spectropolarimetric observations. J. Quant. Spectrosc. Radiat. Transf. 88, 37 (2004).
https://doi.org/10.1016/j.jqsrt.2004.03.023
A.V. Morozhenko, A.S. Ovsak, A.P. Vid'machenko, V.G. Teifel, P.G. Lysenko. Imaginary part of the refractive index of aerosol in latitudinal belts of Jupiter's disc. Kinemat. Phys. Celest. Bod. 32, 30 (2016).
https://doi.org/10.3103/S0884591316010062
A. Morozhenko, A. Vid'machenko. Polarimetry and physics of solar system bodies. In: Photopolarimetry in Remote Sensing. Edited by G. Videen, Y. Yatskiv, M. Mishchenko (Kluwer Academic Publishers, 2004), p. 369.
https://doi.org/10.1007/1-4020-2368-5_16
A.P. Vidmachenko, A.F. Steklov, N.F. Minyailo. Seasonal activity on Jupiter. Sov. Astron. Lett. 10, 289 (1984) (in Russian).
Zh.I. Patlashenko. Prospects of passive remote spectropolarimetry of atmospheric aerosol. Visn. KrNU Mykh. Ostrogradskogo 5, 94 (2015) (in Ukrainian).
A.V. Morozhenko, A.P. Vidmachenko, P.V. Nevodovskii. Aerosol in the upper layer of Earth's atmosphere. Kinemat. Phys. Celest. Bod. 29, 5, 243 (2013).
https://doi.org/10.3103/S0884591313050073
P. Formenti, K.L. Mbemba Kabuiku, I. Chiapello, F. Ducos, F. Dulac, D. Tanr'e. Aerosol optical properties derived from POLDER-3/PARASOL (2005-2013) over the western Mediterranean Sea - Part 1: Quality assessment with AERONET and in situ airborne observations. Atmos. Meas. Tech. 11, 6761 (2018).
https://doi.org/10.5194/amt-11-6761-2018
Y. Wei, Y. Zhang, C. Chen, O. Dubovik, Y. Zhang, H. Xu, K. Li, J. Chen, H. Wang, B. Ge, C. Fan. Validation of POLDER GRASP aerosol optical retrieval over China using SONET observations. J. Quant. Spectr.Radiat. Transf. 246, 106931 (2020).
https://doi.org/10.1016/j.jqsrt.2020.106931
O. Dubovik et al. Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives. J. Quant. Spectr. Radiat. Transf. 224, 474 (2019).
V.V. Avramchuk. Multicolor polarimetry of the light of the twilight and daytime sky at the zenith. Vopr. Astrofiz. (Naukova Dumka, 1965), pp. 112-120 (in Russian).
K.S. Shifrin. Light Scattering in Turbid Environment (GosTekhTeoretIzdat, 1951) (in Russian).
O.S. Ugolnikov, I.A. Maslov. Multicolor polarimetry of the twilight sky. The role of multiple light scattering as a function of wavelength. Kosmich. Issled. 40, 242 (2002) (in Russian).
P. Nevodovskyi, O. Morozhenko, A. Vidmachenko, O. Ivakhiv, M. Geraimchuk, O. Zbrutskyi. Tiny ultraviolet polarimeter for earth stratosphere from space investigation. In: Proceedings of the 8th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS'2015), September 24-26, 2015, Warsaw (2015), Vol. 1, p. 28.
https://doi.org/10.1109/IDAACS.2015.7340695
P. Nevodovskii, A. Vidmachenko, O. Ivakhiv, O. Zbrutskyi, M. Geraimchuk, Y. Hirniak. Remote study of the earth
stratospheric aerosol. In: Proceedings of the 2019 IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO-2019), April 16-18, 2019, Kyiv (2019), p. 640.
G.V. Rozenberg. Twilight (Springer, 1966).
https://doi.org/10.1007/978-1-4899-6353-6
A. Mugnai, W.J. Wiscombe. Scattering at radiation by moderately nonspherical particles. J. Atmos. Sci. 37, 1291 (1980).
https://doi.org/10.1175/1520-0469(1980)037<1291:SORBMN>2.0.CO;2
M.I. Mishchenko. Light scattering by randomly oriented axially symmetric particles. J. Opt. Soc. Am. 8, 871 (1991).
https://doi.org/10.1364/JOSAA.8.000871
M.I. Mishchenko, L.D. Travis, D.W. Mackowski. T-matrix computations of light scattering by nonspherical particles: A review. J. Quant. Spectr. Radiat. Transf. 55, 535 (1996).
https://doi.org/10.1016/0022-4073(96)00002-7
V.M. Klimenko, A.V. Morozhenko, A.P. Vid'machenko. Phase eff ect for the brightness coeffi cient of the central disk of Saturn and features of Jupiter's disk. Icarus 42, 354 (1980).
https://doi.org/10.1016/0019-1035(80)90101-3
E.G. Yanovitskii, Z.O. Dumanskii. Tables for Light Scattering by a Polydisperse System of Spherical Particles (Naukova Dumka, 1972) (in Russian).
S.B. Jones, S.P. Friedman. Particle shape eff ects on the effective permittivity of anisotropic or isotropic media consisting of aligned or randomly oriented ellipsoidal particles. Water Resours. Res. 36, 2821 (2000).
https://doi.org/10.1029/2000WR900198
Zh.M. Dlugach, M.I. Mishchenko, A.V. Morozhenko. Influence of the particle shape on the estimates of the optical parameters of the dust component in the Martian atmosphere. Kinemat. Fiz. Nebesn. Tel 18, 33 (2002) (in Russian).
M.I. Mishchenko, L.D. Travis, A.A. Lacis. Scattering, Absorption and Emission of Light by Small Particles (Cambrige University Press, 2002).
O.V. Morozhenko. Methods and Results of Remote Probing of Planetary Atmospheres (Naukova Dumka, 2004) (in Ukrainian).
V.G. Fesenkov. On the polarization method of studying twilight phenomena. Astronom. Zh. 43, 198 (1966) (in Russian).
N.A. Fuks. The Mechanics of Aerosols (Macmillan, 1964).
L.M. Levin. Studies on the Physics of Coarse Aerosols (Izd. AN USSR, 1961) (in Russian).
Yu.V. Aleksandrov, V.I. Garazha. Polydisperse light scattering indicatrices. Vestn. Kharkov. Univ. Ser. Astronom. 4, No. 1, 91 (1965) (in Russian).
H. Horvath, R. Gunter, S. Wilkison. Determination of the coarse mode of the atmospheric aerosol using data from a forward-scattering spectrometer probe. Aeros. Sci. Technol. 12, 964 (1990).
https://doi.org/10.1080/02786829008959407
L.S. Ivlev, Yu.A. Dovgalyuk. Physics of Atmospheric Aerosol Systems (NIIKh SPbGU, 1999) (in Russian).
Yu.M. Timofeev, A.V. Vasiliev. Fundamentals of Theoretical Atmospheric Optics (St.-Petersburg State University, 2007) (in Russian).
P.C. Reist. Introduction to Aerosol Science (MacMillan Publishing Company, 1984).
O.S. Ugolnikov, I.A. Maslov, B.V. Kozelov, J.M. Dlugach. Noctilucent clouds polarimetry: Twilight measurements in a wide range of scattering angles. Planet. Space Sci. 125, 105 (2016).
https://doi.org/10.1016/j.pss.2016.03.010
K. Zheng, M. Teng, C. Ke, G. Zhenfeng, M. Liang. Three-wavelength polarization Scheimpfl ug lidar system developed for remote sensing of atmospheric aerosols. Appl. Opt. 58, 8612 (2019).
https://doi.org/10.1364/AO.58.008612
A.V. Vasiliev, I.N. Melnikova. Methods for Applied Analysis of the Results of In-Situ Measurements in the Environment (Izd. BGTU, St.-Petersburg, 2009) (in Russian).
D. Tanr'e, F.M. Br'eon, J.L. Deuz'e, O. Dubovik, F. Ducos, P. Fran¸cois, P. Goloub, M. Herman, A. Lifermann, F. Waquet. Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-train: The PARASOL mission. Atmos. Meas. Tech. 4, 1383 (2011).
https://doi.org/10.5194/amt-4-1383-2011
P. Parol, J.C. Buriez, C. Vanbauce, J. Riedi, L.C. Labonnote, M. Doutriaux-Boucher, M. Vesperini, G. Seze, P. Couvert, M. Viollier, F.M. Breon. Capabilities of multi-angle polarization cloud measurements from satellite: POLDER results. Adv. Space Res. 33, 1080 (2004).
https://doi.org/10.1016/S0273-1177(03)00734-8
Allen's Astrophysical Quantities. Edited by A.N. Cox (Springer, 2002).
B.A. Bodhaine, N.B. Wood, E.G. Dutton, J.R. Slusser. On Rayleigh optical depth calculations. J. Atm. Ocean Tech. 16, 1856 (1999).
https://doi.org/10.1175/1520-0426(1999)016<1854:ORODC>2.0.CO;2
J.M. Dlugach, A.V. Morozhenko, A.P. Vid'machenko, E.G. Yanovitskij. Investigations of the optical properties of
Saturn's atmosphere carried out at the Main astronomical observatory of the Ukrainian Academy of Sciences. Icarus 54, 319 (1983).
https://doi.org/10.1016/0019-1035(83)90201-4
V. Bovchalyuk, G. Milinevs'kyi, V. Danylevs'kyi, F. Golub, M. Sosonkin, Yu. Yukhymchuk, T. Podvin. Properties of an aerosol in the atmosphere over Kyiv according to lidar and photometric observations. Kosm. Nauka Tekhnol. 23, No. 6, 34 (2017) (in Ukrainian). https://doi.org/10.15407/knit2017.06.034
H.C. van de Hulst. Light Scattering by Small Particles (Dover Publications, 1981).
D. Deirmendjian. Electromagnetic Scattering on Spherical Polydispersions (Elsevier, 1969).
K.S. Shifrin, I.L. Zelmanovich. Light Scattering Tables. Vol. 1. Angular Functions (Hydrometeorological Publishing House, 1966) (in Russian).
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.