Recovery of Parameters for the Multimodal Aerosol Com-ponent in the Atmosphere from Spectral Polarimetric Measurements


  • O.S. Ovsak Main Astronomical Observatory, Nat. Acad. of Sci. of Ukraine
  • V.M. Vashchenko Interdepartmental Center for Fundamental Researches in Power Engineering and Ecology
  • A.P. Vid'machenko Main Astronomical Observatory, Nat. Acad. of Sci. of Ukraine, National University of Life and Environmental Sciences of Ukraine
  • Ye.A. Loza Interdepartmental Center for Fundamental Researches in Power Engineering and Ecology
  • Zh.I. Patlashenko State Ecological Academy of Postgraduate Education and Management
  • B.O. Ovsak Taras Shevchenko National University of Kyiv



atmosphere, degree of linear polarization, aerosol, recovery of parameters


A method for detecting the major aerosol modes in an atmospheric column and recovering the probable values of the microphysical parameters of their particles from the spectral phase dependences of the sky linear polarization degree has been proposed. A test processing of sky polarization measurements over the location site of the Main Astronomical Observatory of the National Academy of Sciences of Ukraine (Golosiiv, Kyiv) is performed. Two major, coarse and fi ne, aerosol modes are found in the city atmosphere. The microphysical parameters of those modes are determined assuming the normal-logarithmic distribution function for the particle sizes.


Air quality in Europe - 2019 report. EEA Report No. 10/2019 (2019).

E. Strukova, A. Golub, A. Markandya. Air pollution costs in Ukraine. Environ. Econom. 2, Iss. 3, 52 (2011).

F. Karagulian, M. Gerboles, M. Barbiere, A. Kotsev, F. Lagler, A. Borowiak. Review of Sensors for Air Quality Monitoring (Publications Offi ce of the European Union, 2019).

D. Huige, W. Qiyu, H. Hangbo, L. Siwen, Y. Qing, L. Jingjing, S. Yuehui, H. Dengxin. Aerosol microphysical particle parameter inversion and error analysis based on remote sensing data. Comput. Sci. Geol.-Remote Sens. 10, 1753 (2018).

I. Veselovskii, D.N. Whiteman, M. Korenskiy, A. Suvorina, D. P'erez-Ram'ırez. Use of rotational Raman measurements in multiwavelength aerosol lidar for evaluation of particle backscattering and extinction. Atmos. Meas. Tech. 8, 4111 (2015).

W.H. Johnathan, A.H. Chris, L.C. Anthony, B.H. David, A.F. Richard, L.M. Terry, W. Wayne, R.I. Luis, E.H. Floyd. Airborne High Spectral Resolution Lidar for profi ling aerosol optical properties. Appl. Opt. 47, 6734 (2008).

D. Huige, H. Hua, Y. Cui, D. Hua, T. He, Y. Wang, Q. Yan. Vertical distribution of optical and microphysical properties of smog aerosols measured by multi-wavelength polarization lidar in Xi'an, China. J. Quant. Spectrosc. Radiat. Transf. 188, 28 (2017).

Z. Shuang, W. Jian, F. Wenxuan, Y. Qidong, Z. Deming. Review of aerosol optical depth retrieval using visibility data. Earth-Sci. Rev. 200, 102986 (2020).

I. Veselovskii, O. Dubovik, A. Kolgotin, T. Lapyonok, P. Girolamo, D. Summary, D.N. Whiteman, M. Mishchenko, D. Tanr'e. Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwave-

length lidar measurements. J. Geophys. Res. 115, D21203 (2010).

A.K. Jagodnicka, T. Stacewicz, G. Karasi'n ski, M. Posyniak, S.P. Malinowski. Particle size distribution retrieval

from multiwavelength lidar signals for droplet aerosol. Appl. Opt. 48, B8 (2009).

A. Lopatin, O. Dubovik, A. Chaikovsky et al. Enhancement of aerosol characterization using synergy of lidar and

sun-photometer coincident observations: The GARRLiC algorithm. Atmos. Meas. Techn. 8, 2065 (2013).

J.E. Hansen, J.M. Hovenier. Interpretation of the polarization of Venus. J. Atmos. Sci. 31, 1137 (1974).<1137:IOTPOV>2.0.CO;2

A.V. Morozhenko, E.G. Yanovitskij. The optical properties of Venus and Jovian planets. I. The Atmosphere of Jupiter according to polarimetric observations. Icarus 18, 583 (1973).

J.M. Dlugach, M.I. Mishchenko. Photopolarimetry of planetary atmospheres: what observational data are essential for a unique retrieval of aerosol microphysics? Mon. Not. R. Astron. Soc. 384, 64 (2008).

J.M. Dlugach, M.I. Mishchenko. The eff ect of particle shape on microphysical properties of Jovian aerosols retrieved from ground-based spectropolarimetric observations. J. Quant. Spectrosc. Radiat. Transf. 88, 37 (2004).

A.V. Morozhenko, A.S. Ovsak, A.P. Vid'machenko, V.G. Teifel, P.G. Lysenko. Imaginary part of the refractive index of aerosol in latitudinal belts of Jupiter's disc. Kinemat. Phys. Celest. Bod. 32, 30 (2016).

A. Morozhenko, A. Vid'machenko. Polarimetry and physics of solar system bodies. In: Photopolarimetry in Remote Sensing. Edited by G. Videen, Y. Yatskiv, M. Mishchenko (Kluwer Academic Publishers, 2004), p. 369.

A.P. Vidmachenko, A.F. Steklov, N.F. Minyailo. Seasonal activity on Jupiter. Sov. Astron. Lett. 10, 289 (1984) (in Russian).

Zh.I. Patlashenko. Prospects of passive remote spectropolarimetry of atmospheric aerosol. Visn. KrNU Mykh. Ostrogradskogo 5, 94 (2015) (in Ukrainian).

A.V. Morozhenko, A.P. Vidmachenko, P.V. Nevodovskii. Aerosol in the upper layer of Earth's atmosphere. Kinemat. Phys. Celest. Bod. 29, 5, 243 (2013).

P. Formenti, K.L. Mbemba Kabuiku, I. Chiapello, F. Ducos, F. Dulac, D. Tanr'e. Aerosol optical properties derived from POLDER-3/PARASOL (2005-2013) over the western Mediterranean Sea - Part 1: Quality assessment with AERONET and in situ airborne observations. Atmos. Meas. Tech. 11, 6761 (2018).

Y. Wei, Y. Zhang, C. Chen, O. Dubovik, Y. Zhang, H. Xu, K. Li, J. Chen, H. Wang, B. Ge, C. Fan. Validation of POLDER GRASP aerosol optical retrieval over China using SONET observations. J. Quant. Spectr.Radiat. Transf. 246, 106931 (2020).

O. Dubovik et al. Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives. J. Quant. Spectr. Radiat. Transf. 224, 474 (2019).

V.V. Avramchuk. Multicolor polarimetry of the light of the twilight and daytime sky at the zenith. Vopr. Astrofiz. (Naukova Dumka, 1965), pp. 112-120 (in Russian).

K.S. Shifrin. Light Scattering in Turbid Environment (GosTekhTeoretIzdat, 1951) (in Russian).

O.S. Ugolnikov, I.A. Maslov. Multicolor polarimetry of the twilight sky. The role of multiple light scattering as a function of wavelength. Kosmich. Issled. 40, 242 (2002) (in Russian).

P. Nevodovskyi, O. Morozhenko, A. Vidmachenko, O. Ivakhiv, M. Geraimchuk, O. Zbrutskyi. Tiny ultraviolet polarimeter for earth stratosphere from space investigation. In: Proceedings of the 8th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS'2015), September 24-26, 2015, Warsaw (2015), Vol. 1, p. 28.

P. Nevodovskii, A. Vidmachenko, O. Ivakhiv, O. Zbrutskyi, M. Geraimchuk, Y. Hirniak. Remote study of the earth

stratospheric aerosol. In: Proceedings of the 2019 IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO-2019), April 16-18, 2019, Kyiv (2019), p. 640.

G.V. Rozenberg. Twilight (Springer, 1966).

A. Mugnai, W.J. Wiscombe. Scattering at radiation by moderately nonspherical particles. J. Atmos. Sci. 37, 1291 (1980).<1291:SORBMN>2.0.CO;2

M.I. Mishchenko. Light scattering by randomly oriented axially symmetric particles. J. Opt. Soc. Am. 8, 871 (1991).

M.I. Mishchenko, L.D. Travis, D.W. Mackowski. T-matrix computations of light scattering by nonspherical particles: A review. J. Quant. Spectr. Radiat. Transf. 55, 535 (1996).

V.M. Klimenko, A.V. Morozhenko, A.P. Vid'machenko. Phase eff ect for the brightness coeffi cient of the central disk of Saturn and features of Jupiter's disk. Icarus 42, 354 (1980).

E.G. Yanovitskii, Z.O. Dumanskii. Tables for Light Scattering by a Polydisperse System of Spherical Particles (Naukova Dumka, 1972) (in Russian).

S.B. Jones, S.P. Friedman. Particle shape eff ects on the effective permittivity of anisotropic or isotropic media consisting of aligned or randomly oriented ellipsoidal particles. Water Resours. Res. 36, 2821 (2000).

Zh.M. Dlugach, M.I. Mishchenko, A.V. Morozhenko. Influence of the particle shape on the estimates of the optical parameters of the dust component in the Martian atmosphere. Kinemat. Fiz. Nebesn. Tel 18, 33 (2002) (in Russian).

M.I. Mishchenko, L.D. Travis, A.A. Lacis. Scattering, Absorption and Emission of Light by Small Particles (Cambrige University Press, 2002).

O.V. Morozhenko. Methods and Results of Remote Probing of Planetary Atmospheres (Naukova Dumka, 2004) (in Ukrainian).

V.G. Fesenkov. On the polarization method of studying twilight phenomena. Astronom. Zh. 43, 198 (1966) (in Russian).

N.A. Fuks. The Mechanics of Aerosols (Macmillan, 1964).

L.M. Levin. Studies on the Physics of Coarse Aerosols (Izd. AN USSR, 1961) (in Russian).

Yu.V. Aleksandrov, V.I. Garazha. Polydisperse light scattering indicatrices. Vestn. Kharkov. Univ. Ser. Astronom. 4, No. 1, 91 (1965) (in Russian).

H. Horvath, R. Gunter, S. Wilkison. Determination of the coarse mode of the atmospheric aerosol using data from a forward-scattering spectrometer probe. Aeros. Sci. Technol. 12, 964 (1990).

L.S. Ivlev, Yu.A. Dovgalyuk. Physics of Atmospheric Aerosol Systems (NIIKh SPbGU, 1999) (in Russian).

Yu.M. Timofeev, A.V. Vasiliev. Fundamentals of Theoretical Atmospheric Optics (St.-Petersburg State University, 2007) (in Russian).

P.C. Reist. Introduction to Aerosol Science (MacMillan Publishing Company, 1984).

O.S. Ugolnikov, I.A. Maslov, B.V. Kozelov, J.M. Dlugach. Noctilucent clouds polarimetry: Twilight measurements in a wide range of scattering angles. Planet. Space Sci. 125, 105 (2016).

K. Zheng, M. Teng, C. Ke, G. Zhenfeng, M. Liang. Three-wavelength polarization Scheimpfl ug lidar system developed for remote sensing of atmospheric aerosols. Appl. Opt. 58, 8612 (2019).

A.V. Vasiliev, I.N. Melnikova. Methods for Applied Analysis of the Results of In-Situ Measurements in the Environment (Izd. BGTU, St.-Petersburg, 2009) (in Russian).

D. Tanr'e, F.M. Br'eon, J.L. Deuz'e, O. Dubovik, F. Ducos, P. Fran¸cois, P. Goloub, M. Herman, A. Lifermann, F. Waquet. Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-train: The PARASOL mission. Atmos. Meas. Tech. 4, 1383 (2011).

P. Parol, J.C. Buriez, C. Vanbauce, J. Riedi, L.C. Labonnote, M. Doutriaux-Boucher, M. Vesperini, G. Seze, P. Couvert, M. Viollier, F.M. Breon. Capabilities of multi-angle polarization cloud measurements from satellite: POLDER results. Adv. Space Res. 33, 1080 (2004).

Allen's Astrophysical Quantities. Edited by A.N. Cox (Springer, 2002).

B.A. Bodhaine, N.B. Wood, E.G. Dutton, J.R. Slusser. On Rayleigh optical depth calculations. J. Atm. Ocean Tech. 16, 1856 (1999).<1854:ORODC>2.0.CO;2

J.M. Dlugach, A.V. Morozhenko, A.P. Vid'machenko, E.G. Yanovitskij. Investigations of the optical properties of

Saturn's atmosphere carried out at the Main astronomical observatory of the Ukrainian Academy of Sciences. Icarus 54, 319 (1983).

V. Bovchalyuk, G. Milinevs'kyi, V. Danylevs'kyi, F. Golub, M. Sosonkin, Yu. Yukhymchuk, T. Podvin. Properties of an aerosol in the atmosphere over Kyiv according to lidar and photometric observations. Kosm. Nauka Tekhnol. 23, No. 6, 34 (2017) (in Ukrainian).

H.C. van de Hulst. Light Scattering by Small Particles (Dover Publications, 1981).

D. Deirmendjian. Electromagnetic Scattering on Spherical Polydispersions (Elsevier, 1969).

K.S. Shifrin, I.L. Zelmanovich. Light Scattering Tables. Vol. 1. Angular Functions (Hydrometeorological Publishing House, 1966) (in Russian).



How to Cite

Ovsak, O., Vashchenko, V., Vid’machenko, A., Loza, Y., Patlashenko, Z., & Ovsak, B. (2021). Recovery of Parameters for the Multimodal Aerosol Com-ponent in the Atmosphere from Spectral Polarimetric Measurements. Ukrainian Journal of Physics, 66(6), 466.



Optics, atoms and molecules