Excitation of Ultrashort Spin Waves via Spin-Cherenkov Effect in Magnetic Waveguides

Authors

  • D.V. Slobodianiuk Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/ujpe66.5.424

Keywords:

spin-Cherenkov effect, magnetic waveguide, spin wave, spintronics

Abstract

The excitation of ultrashort wavelength spin waves via the spin-Cherenkov effect in magnetic waveguides is investigated via a micromagnetic modeling. The proposed excitation method is relatively simple and easily tunable. The excitation efficiency of the proposed scheme is obtained for different excitation pulse velocities and widths. A coupled waveguide system is also considered. In this case, the spin waves are excited in the first waveguide and then are transferred to the second one due to the dipolar coupling between waveguides. It is also shown that the excitation and transfer of excited spin waves have some limitations related to the dipolar coupling mechanism between the waveguides.

References

A. Haldar, D. Kumar, A.O. Adeyeye. A reconfigurable waveguide for energy-efficient transmission and local manipulation of information in a nanomagnetic device. Nat. Nanotech. 11, 437 (2016).

https://doi.org/10.1038/nnano.2015.332

K. Wagner, A. Ka'kay, K. Schultheiss, A. Henschke, T. Sebastian, H. Schultheiss. Magnetic domain walls as reconfigurable spin-wave nanochannels. Nat. Nanotech. 11, 432 (2016).

https://doi.org/10.1038/nnano.2015.339

V.E. Demidov, S. Urazhdin, S.O. Demokritov. Direct observation and mapping of spin waves emitted by spin-torque nano-oscillators. Nature Materials, 9, 984 (2010).

https://doi.org/10.1038/nmat2882

M. Madami, S. Bonetti, G. Consolo, S. Tacchi, G. Carlotti, G. Gubbiotti, F.B. Mancoff , M.A. Yar, J. Akerman. Direct observation of a propagating spin wave induced by spin-transfer torque. Nat. Nanotech. 6, 635 (2011).

https://doi.org/10.1038/nnano.2011.140

C.S. Davies, A. Francis, A.V. Sadovnikov, S.V. Chertopalov, M.T. Bryan, S.V. Grishin, D.A. Allwood, Y.P. Sharaevskii, S.A. Nikitov, V.V. Kruglyak. Towards graded-index magnonics: Steering spin waves in magnonic networks. Phys. Rev. B 92, 020408(R) (2015).

https://doi.org/10.1103/PhysRevB.92.020408

V.E. Demidov, M.P. Kostylev, K. Rott, J. Munchenberger, G. Reiss S.O. Demokritov. Excitation of short-wave length spin waves in magnonic waveguides. Appl. Phys. Lett. 99, 082507 (2011).

https://doi.org/10.1063/1.3631756

Y. Au, E. Ahmad, O. Dmytriiev, M. Dvornik, T. Davison, V.V. Kruglyak. Resonant microwave-to-spin-wave transducer. Appl. Phys. Lett. 100, 182404 (2012).

https://doi.org/10.1063/1.4711039

H. Yu, G. Duerr, R. Huber, M. Bahr, T. Schwarze, F. Brandl, D. Grundler. Omnidirectional spin-wave nano-

grating couple. Nat. Commun. 4, 2702 (2013).

G. Dieterle, J. Forster, H. Stoll, A.S. Semisalova, S. Finizio, A. Gangwar, M. Weig, M. Noske, M. Fahnle, I. Bykova, J. Grafe, D.A. Bozhko, Yu. Musiienko-Shmarova, V. Tiberkevich, A.N. Slavin, C.H. Back, J. Raabe, G. Schutz, S. Wintz. Coherent excitation of heterosymmetric spin waves with ultrashort wavelengths. Phys. Rev. Lett. 122, 117202 (2019).

https://doi.org/10.1103/PhysRevLett.122.117202

M. Yan, C. Andreas, A. Kakay, F. Garcia-Sanchez, R. Hertel. Fast domain wall dynamics in magnetic nanotubes: Suppression of Walker breakdown and Cherenkov-like spin wave emission. Appl. Phys. Lett. 99, 122505 (2011).

https://doi.org/10.1063/1.3643037

M. Yan, C. Andreas, A. Ka'kay, R. Hertel. Spin-Cherenkov effect and magnonic Mach cones. Phys. Rev. B 88, 220412(R) (2013).

https://doi.org/10.1103/PhysRevB.88.220412

Q. Wang, P. Pirro, R. Verba, A. Slavin, B. Hillebrands, A.V. Chumak. Reconfi gurable nanoscale spin-wave directional coupler. Sci. Adv. 4(1), e1701517 (2018).

https://doi.org/10.1126/sciadv.1701517

A.A. Serga, A.V. Chumak, B. Hillebrands. YIG magnonics. J. Phys. D: Appl. Phys. 43, 264002 (2010).

https://doi.org/10.1088/0022-3727/43/26/264002

M.J. Donahuem, D.G. Porter. Interagency Report NIS-TIR 6376 (National Institute of Standards and Technology, 1999).

A.G. Gurevich, G.A. Melkov. Magnetization Oscillations and Waves (CRC Press, 1996).

J. Xia, X. Zhang, M. Yan, W. Zhao, Y. Zhou. Spin-Cherenkov effect in a magnetic nanostrip with interfacial Dzyaloshinskii-Moriya interaction. Sci. Rep. 6, 25189 (2016). https://doi.org/10.1038/srep25189

T. Bracher, P. Pirro, B. Obry, B. Leven, A.A. Serga, B. Hillebrands. Mode selective parametric excitation of spin waves in a Ni81Fe19 microstripe. Appl. Phys. Lett. 99, 162501 (2011). https://doi.org/10.1063/1.3651506

O.V. Prokopenko, D.A. Bozhko, V.S. Tyberkevych, A.V. Chumak, V.I. Vasyuchka, A.A. Serga, O. Dzyapko, R.V. Verba, A.V. Talalaevskij, D.V. Slobodianiuk, Yu.V. Kobljanskyj, V.A. Moiseienko, S.V. Sholom, V.Yu. Malyshev. Recent trends in microwave magnetism and superconductivity. Ukr. J. Phys. 64, 888 (2019). https://doi.org/10.15407/ujpe64.10.888

Downloads

Published

2021-05-28

How to Cite

Slobodianiuk, D. (2021). Excitation of Ultrashort Spin Waves via Spin-Cherenkov Effect in Magnetic Waveguides. Ukrainian Journal of Physics, 66(5), 424. https://doi.org/10.15407/ujpe66.5.424

Issue

Section

Physics of magnetic phenomena and physics of ferroics