Statistical Description of Non-Equilibrium Many-Particle Systems

Authors

  • B.I. Lev Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • A.G. Zagorodny Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe65.12.1056

Keywords:

non-equilibrium statistical operator, many-particle systems, stationary states

Abstract

In most cases, the systems of interacting particles are non-equilibrium. In this review, a new approach based on the application of a non-equilibrium statistical operator is presented, which allows the inhomogeneous distributions of the particles and the temperature to be taken into account. The method uses the saddle-point procedure to find dominant contributions to the partition function of the system and enables all of its thermodynamic parameters to be determined. Probable peculiarities in the behavior of the systems with interaction – such as gravitational systems, systems with Coulombic repulsion, and so forth – under various thermodynamic conditions are predicted. A new approach is proposed to describe non-equilibrium systems in the energy space, which is an extension of the Gibbs approach to macroscopic systems under non-equilibrium conditions. It allows the stationary states and the dynamics of non-equilibrium systems to be described.

References

W. Thirring. Systems with negative specific heat. Z. Phys. 235, 339 (1970). https://doi.org/10.1007/BF01403177

P.-H. Chavanis, C. Rosier, C. Sire. Thermodynamics of self-gravitating systems. Phys. Rev. E 66, 036105 (2002). https://doi.org/10.1103/PhysRevE.66.036105

D.N. Zubarev. Non-Equilibrium Statistical Thermodynamics (Consultants Bureau, 1974). https://doi.org/10.21236/AD0784411

V. Laliena. On the thermodynamical limit of self-gravitating systems. Nucl. Phys. B 668, 403 (2003). https://doi.org/10.1016/j.nuclphysb.2003.07.005

R. Pakter, B. Marcos, Y. Levin. Symmetry breaking in d-dimensional self-gravitating systems. Phys. Rev. Lett. 111, 230603 (2013). https://doi.org/10.1103/PhysRevLett.111.230603

F.P.C. Benetti, A.C. Ribeiro-Teixeira, R. Pakter, Y. Levin. Nonequilibrium stationary states of 3D self-gravitating systems. Phys. Rev. Lett. 113, 100602 (2014). https://doi.org/10.1103/PhysRevLett.113.100602

R. Baxter. Exactly Solved Models in Statistical Mechanics (Academic Press, 1980).

D. Ruelle. Statistical Mechanics (Rigorous Results) (Benjamin, 1969).

Y.D. Bilotsky, B.I. Lev. Clustering in condensed media. Teor. Mat. Fiz. 60, 711 (1984) (in Russian). https://doi.org/10.1007/BF01018256

B.I. Lev, A.Ya. Zhugaevych. Statistical description of model systems of interacting particles and phase transitions accompanied by cluster formation. Phys. Rev. E. 57, 6460 (1998). https://doi.org/10.1103/PhysRevE.57.6460

B.I. Lev. Nonequilibrium self-gravitating system. Int. J. Mod. Phys. B 25, 2237 (2011). https://doi.org/10.1142/S0217979211100771

H. Kleinert. Gauge Field in Condensed Matter (Word Scientific, 1989). https://doi.org/10.1142/0356

R.L. Stratonovich. On a method of calculating quantum distribution functions. Sov. Phys. Dokl. 2, 416 (1958).

J. Hubbard. Calculation of partition functions. Phys. Rev. Lett. 3, 77 (1958). https://doi.org/10.1103/PhysRevLett.3.77

K.V. Grigorishin, B.I. Lev. Cluster formation in the system of interacting Bose particles. Phys. Rev. E 71, 066105 (2005). https://doi.org/10.1103/PhysRevE.71.066105

T. Padmanabhan. Statistical mechanics of gravitating system. Phys. Rep. 188, 285 (1990). https://doi.org/10.1016/0370-1573(90)90051-3

P.-H. Chavanis. Phase transitions in self-gravitating systems.Int. J. Mod. Phys. B 20, 3113 (2006). https://doi.org/10.1142/S0217979206035400

S. Chandrasekhar. An Introduction to the Study of Stellar Structure (Dover, 1942).

C. Sire, P.-H. Chavanis. Thermodynamics and collapse of self-gravitating Brownian particles in D dimensions. Phys. Rev. E 66, 046133 (2002). https://doi.org/10.1103/PhysRevE.66.046133

E.B. Aronson, C.J. Hansen. Thermal equilibrium states of a classical system with gravitation. Astrophys. J. 117, 145 (1972). https://doi.org/10.1086/151693

K. Huang. Statistical Mechanics (Wiley, 1963) [ISBN: 978-0-471-81518-1].

A. Isihara. Statistical Physics (Academic Press, 1971).

S. Shaikh, A. Khan. Instability of thermally conducting self-gravitating systems. J. Mod. Phys. 1, 77 (2010). https://doi.org/10.4236/jmp.2010.110010

B.I. Lev. Brownian system in energy space. Eur. Phys. J. Spec. Topics 216, 37 (2013). https://doi.org/10.1140/epjst/e2013-01727-1

H.-J. de Vega, N. S'anchez. The statistical mechanics of the self-gravitating gas: equation of state and fractal dimension. Phys. Lett. B 490, 180 (2000). https://doi.org/10.1016/S0370-2693(00)00973-4

H.-J. de Vega, N. S'anchez. Statistical mechanics of the self-gravitating gas: I. Thermodynamic limit and phase diagrams. Nucl. Phys. B 625, 409 (2002). https://doi.org/10.1016/S0550-3213(02)00025-1

H.-J. de Vega, N. S'anchez. Statistical mechanics of the self-gravitating gas: II. Local physical magnitudes and fractal structures. Nucl. Phys. B 625, 460 (2002). https://doi.org/10.1016/S0550-3213(02)00026-3

W.C. Saslow. Gravitational Physics of Stellar and Galactic Systems (Cambridge Univ. Press, 1987).

D. Lynden-Bell, R. Wood. The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar systems. Mon. Not. R. Astron. Soc. 138, 495 (1968). https://doi.org/10.1093/mnras/138.4.495

H.J. de Vega, N. S'anchez, F. Combes. Fractal dimensions and scaling laws in the interstellar medium: A new field theory approach. Phys. Rev. D 54, 6008 (1996). https://doi.org/10.1103/PhysRevD.54.6008

J.A.S. Lima, R. Silva, J. Santos. Jeans' gravitational instability and nonextensive kinetic theory. Astron. Astrophys. 396, 309 (2002). https://doi.org/10.1051/0004-6361:20021395

A.P. Boss. Giant planet formation by gravitational instability. Science 276, 1836 (1997). https://doi.org/10.1126/science.276.5320.1836

S.M. Fall. Gravitational instability theory of galaxy formation and clustering: Some recent developments. Ann. NY Acad. Sci. 336, 172 (2006). https://doi.org/10.1111/j.1749-6632.1980.tb15928.x

H. Kleinert. Collective quantum fields. Fortschr. Phys. 26, 565 (1979). https://doi.org/10.1002/prop.19780261102

L.N. Lipatov. Divergence of the perturbation-theory series and the quasi-classical theory. JETP (Sov) 72, 412 (1977).

S. Edward, A. Lenard. Exact statistical mechanics of a one-dimensional system with Coulomb forces. II. The method of functional integration. J. Math. Phys. 3, 778 (1962). https://doi.org/10.1063/1.1724281

B.I. Lev, A.G. Zagorodny. Statistical description of Coulomb-like systems. Phys. Rev. E 84, 061115 (2011). https://doi.org/10.1103/PhysRevE.84.061115

B.I. Lev. Statistical induced dynamic of self-gravitating system. J. Mod. Phys. 10, 687 (2019). https://doi.org/10.4236/jmp.2019.107049

B.I. Lev. Statistical derivation of the fundamental scalar field. J. Mod. Phys. 9, 2223 (2018). https://doi.org/10.4236/jmp.2018.912140

B.I. Lev, S.B. Lev. Statistical description of nonequilibrium self-gravitating systems. Eur. Phys. J. B 9, 3 (2017).

S. Samuel. Grand partition function in field theory with applications to sine-Gordon field theory. Phys. Rev. D 18, 1916 (1978). https://doi.org/10.1103/PhysRevD.18.1916

A.D. Linde. Elementary Particle Physics and Inflationary Cosmology (Harwood Academic, 1990). https://doi.org/10.1201/9780367807788

A.D. Linde. Phase transitions in gauge theories and cosmology. Rep. Prog. Phys. 42, 389 (1979). https://doi.org/10.1088/0034-4885/42/3/001

S. Coleman. Fate of the false vacuum: Semiclassical theory. Phys. Rev. D 15, 2929 (1977); 16, 1762 (1977). https://doi.org/10.1103/PhysRevD.15.2929

G. Rybicki. Exact statistical mechanics of a one-dimensional self-gravitating system. Astrophys. Space Sci. 14, 56 (1971). https://doi.org/10.1007/BF00649195

K.R. Yawn, B.N. Miller. Incomplete relaxation in a two-mass one-dimensional self-gravitating system. Phys. Rev. E 68, 056120 (2003). https://doi.org/10.1103/PhysRevE.68.056120

R.Michie. On the distribution of high energy stars in spherical stellar systems. Not. R. Astron. Soc. 125, 127 (1962). https://doi.org/10.1093/mnras/125.2.127

W. Jaffe. A simple model for the distribution of light in spherical galaxies. Not. R. Astron. Soc. 202, 995 (1983). https://doi.org/10.1093/mnras/202.4.995

Y. Levin, R. Pakter, F.B. Rizzato, T.N. Teles, F.P.C. Benetti. Nonequilibrium statistical mechanics of systems with long-range interactions. Phys. Rep. 535, 1 (2014). https://doi.org/10.1016/j.physrep.2013.10.001

J.W. Cahn. On spinodal decomposition. Acta Metallurgica 9, 795 (1988). https://doi.org/10.1016/0001-6160(61)90182-1

C.W. Gardiner, P. Zoller. Quantum Noise (Springer, 2000) [ISBN: 978-3-540-22301-6]. https://doi.org/10.1007/978-3-662-04103-1

R. Balescu. Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, 1978).

J.W. Gibbs. Elementary Principles in Statistical Mechanics, Developed with Especial Reference to the Rational Foundation of Thermodynamics (Scribner's Sons, 1902). https://doi.org/10.5962/bhl.title.32624

L.D. Landau, E.M. Lifshitz. Statistical Physics (Pergamon, 1978).

D.F. Wells, G.J. Milburn. Quantum Optics (Springer, 2001).

P. Colet, F. De Pasquele, M. San Miguel. Relaxation in the subcritical pitchfork bifurcation: From critical to Gaussian scaling. Phys. Rev. A 43, 5296 (1991). https://doi.org/10.1103/PhysRevA.43.5296

F.D.M. Haldane. "Fractional statistics" in arbitrary dimensions: A generalization of the Pauli principle. Phys. Rev. Lett. 67, 937 (1991). https://doi.org/10.1103/PhysRevLett.67.937

N.G. van Kampen. Stochastic Processes in Physics and Chemistry (North-Holland, 1990).

W. Horsthemke, R. Lefever. Noise-Induced Phase Transitions. Theory, Applications in Physics, Chemistry and Biology (Springer, 1984).

A. Albrecht, P.J. Steinhard. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48, 1220 (1982). https://doi.org/10.1103/PhysRevLett.48.1220

B.I. Lev, H. Yokoyama. Selection of states and fluctuation under the first order phase transitions. Int. J. Mod. Phys. B 17, 4913 (2003). https://doi.org/10.1142/S021797920302274X

Published

2020-12-18

How to Cite

Lev, B., & Zagorodny, A. (2020). Statistical Description of Non-Equilibrium Many-Particle Systems. Ukrainian Journal of Physics, 65(12), 1056. https://doi.org/10.15407/ujpe65.12.1056

Issue

Section

General physics