Relationship between the Parameters of the Second Virial Coefficient of Non-Abelian Anyons and the Two-Parametric Fractional Statistics


  • B.Yu. Sobko Ivan Franko National University of Lviv, Department for Theoretical Physics



virial coefficient, non-Abelian anyons, non-additive/incomplete two-parametric statistics, Haldane–Wu fractional statistics, Polychronakos fractional statistics


A relationship between the parameters of the second virial coefficient for the system of non- Abelian anyons and two-parametric modifications of the Haldane–Wu and Polychronakos fractional statistics has been demonstrated. Parameters that can approximately describe non-Abelian anyons using the indicated statistics types are calculated. The limit at which the non-additivity/incompleteness parameter q tends to unity is considered.


J.M. Leinaas, J. Myrheim. On the theory of identical particles. Nuovo Cimento 37B, 1 (1977).

F. Wilczek. Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957 (1982).

B.I. Halperin. Statistics of quasiparticles and the hierarchy of fractional quantized Hall states. Phys. Rev. Lett. 52, 1583 (1984).

D. Arovas, J.R. Schrieff er, F. Wilczek. Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722 (1984).

A.E.B. Nielsen. Anyon braiding in semianalytical fractional quantum Hall lattice models. Phys. Rev. B 91, 041106 (2015).

E. Shech. Two approaches to fractional statistics in the quantum Hall effect: Idealizations and the curious case of the anyon. Found. Phys. 45, 1063 (2015).

A.Yu. Kitaev. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2 (2003).

V. Lahtinen, J.K. Pachos. A short introduction to topological quantum computation. SciPost Phys. 3, 021 (2017).

F.E. Camino, W. Zhou, V.J. Goldman. Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics. Phys. Rev. B 72, 075342 (2005).

C. Weeks, G. Rosenberg, B. Seradjeh, M. Franz. Anyons in a weakly interacting system. Nature Phys. 3, 797 (2007).

T. Keilmann, S. Lanzmich, I. McCulloch, M. Roncaglia. Statistically induced phase transitions and anyons in 1D optical lattices. Nature Commun. 2, 361 (2011).

G. Moore, N. Read. Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360 362 (1991).

L. Jacak, P. Sitko, K. Wieczorek, A. W'ojs. Quantum Hall Systems: Braid Groups, Composite Fermions, and Fractional Charge (Oxford Univ Press, 2003).

M. Dolev, M. Heiblum, V. Umansky, A. Stern, D. Mahalu. Observation of a quarter of an electron charge at the v = 5/2 quantum Hall state. Nature 452, 829 (2008).

R.L. Willett, L.N. Pfeiffer, K.W. West. Measurement of filling factor 5/2 quasiparticle interference with observation of charge e/4 and e/2 period oscillations. Proc. Natl. Acad. Sci. 106, 8853 (2009).

W. Bishara, P. Bonderson, C. Nayak, K. Shtengel, J.K. Slingerland. Interferometric signature of non-Abelian anyons. Phys. Rev. B 80, 155303 (2009).

F. Mancarella, A. Trombettoni, G. Mussardo. Statistical mechanics of an ideal gas of non-Abelian anyons. Nucl. Phys. B 867, 950 (2013).

A.P. Polychronakos. Virial coefficients of non-Abelian anyons. Phys. Rev. Lett. 84, 1268 (2000).

T. Lee. On statistical mechanics of non-Abelian Chern-Simons particles, preprint arXiv: hep-th/9601018 (1996).

A. Rovenchak. Two-parametric fractional statistics models for anyons. Eur. Phys. J. B 87, 175 (2014).

C. Tsallis. What are the numbers that experiments provide? Qu'ımica Nova 17, 468 (1994).

J. Naudts. The q-exponential family in statistical physics. J. Phys.: Conf. Ser. 201, 012003 (2010).

S. Umarov, C. Tsallis, S. Steinberg. On a q-central limit theorem consistent with nonextensive statistical mechanics. Milan J. Math. 76, 307 (2008).

B. Rosenow, I.P. Levkivskyi, B.I. Halperin. Current correlations from a mesoscopic anyon collider Phys. Rev. Lett. 116, 15 (2016).

H. Bartolomei et al. Fractional statistics in anyon collisions. Science 368, 6487 (2020).

A. Khare. Fractional Statistics and Quantum Theory (World Scientifi c, 2005).



How to Cite

Sobko, B. (2021). Relationship between the Parameters of the Second Virial Coefficient of Non-Abelian Anyons and the Two-Parametric Fractional Statistics. Ukrainian Journal of Physics, 66(7), 595.



General physics