Relationship between the Parameters of the Second Virial Coefficient of Non-Abelian Anyons and the Two-Parametric Fractional Statistics

Authors

  • B.Yu. Sobko Ivan Franko National University of Lviv, Department for Theoretical Physics

DOI:

https://doi.org/10.15407/ujpe66.7.595

Keywords:

virial coefficient, non-Abelian anyons, non-additive/incomplete two-parametric statistics, Haldane–Wu fractional statistics, Polychronakos fractional statistics

Abstract

A relationship between the parameters of the second virial coefficient for the system of non- Abelian anyons and two-parametric modifications of the Haldane–Wu and Polychronakos fractional statistics has been demonstrated. Parameters that can approximately describe non-Abelian anyons using the indicated statistics types are calculated. The limit at which the non-additivity/incompleteness parameter q tends to unity is considered.

References

J.M. Leinaas, J. Myrheim. On the theory of identical particles. Nuovo Cimento 37B, 1 (1977).

https://doi.org/10.1007/BF02727953

F. Wilczek. Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957 (1982).

https://doi.org/10.1103/PhysRevLett.49.957

B.I. Halperin. Statistics of quasiparticles and the hierarchy of fractional quantized Hall states. Phys. Rev. Lett. 52, 1583 (1984).

https://doi.org/10.1103/PhysRevLett.52.1583

D. Arovas, J.R. Schrieff er, F. Wilczek. Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722 (1984).

https://doi.org/10.1103/PhysRevLett.53.722

A.E.B. Nielsen. Anyon braiding in semianalytical fractional quantum Hall lattice models. Phys. Rev. B 91, 041106 (2015).

https://doi.org/10.1103/PhysRevB.91.041106

E. Shech. Two approaches to fractional statistics in the quantum Hall effect: Idealizations and the curious case of the anyon. Found. Phys. 45, 1063 (2015).

https://doi.org/10.1007/s10701-015-9899-0

A.Yu. Kitaev. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2 (2003).

https://doi.org/10.1016/S0003-4916(02)00018-0

V. Lahtinen, J.K. Pachos. A short introduction to topological quantum computation. SciPost Phys. 3, 021 (2017).

https://doi.org/10.21468/SciPostPhys.3.3.021

F.E. Camino, W. Zhou, V.J. Goldman. Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics. Phys. Rev. B 72, 075342 (2005).

https://doi.org/10.1103/PhysRevB.72.075342

C. Weeks, G. Rosenberg, B. Seradjeh, M. Franz. Anyons in a weakly interacting system. Nature Phys. 3, 797 (2007).

https://doi.org/10.1038/nphys730

T. Keilmann, S. Lanzmich, I. McCulloch, M. Roncaglia. Statistically induced phase transitions and anyons in 1D optical lattices. Nature Commun. 2, 361 (2011).

https://doi.org/10.1038/ncomms1353

G. Moore, N. Read. Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360 362 (1991).

https://doi.org/10.1016/0550-3213(91)90407-O

L. Jacak, P. Sitko, K. Wieczorek, A. W'ojs. Quantum Hall Systems: Braid Groups, Composite Fermions, and Fractional Charge (Oxford Univ Press, 2003).

https://doi.org/10.1093/acprof:oso/9780198528708.001.0001

M. Dolev, M. Heiblum, V. Umansky, A. Stern, D. Mahalu. Observation of a quarter of an electron charge at the v = 5/2 quantum Hall state. Nature 452, 829 (2008).

https://doi.org/10.1038/nature06855

R.L. Willett, L.N. Pfeiffer, K.W. West. Measurement of filling factor 5/2 quasiparticle interference with observation of charge e/4 and e/2 period oscillations. Proc. Natl. Acad. Sci. 106, 8853 (2009).

https://doi.org/10.1073/pnas.0812599106

W. Bishara, P. Bonderson, C. Nayak, K. Shtengel, J.K. Slingerland. Interferometric signature of non-Abelian anyons. Phys. Rev. B 80, 155303 (2009).

https://doi.org/10.1103/PhysRevB.80.155303

F. Mancarella, A. Trombettoni, G. Mussardo. Statistical mechanics of an ideal gas of non-Abelian anyons. Nucl. Phys. B 867, 950 (2013).

https://doi.org/10.1016/j.nuclphysb.2012.10.020

A.P. Polychronakos. Virial coefficients of non-Abelian anyons. Phys. Rev. Lett. 84, 1268 (2000).

https://doi.org/10.1103/PhysRevLett.84.1268

T. Lee. On statistical mechanics of non-Abelian Chern-Simons particles, preprint arXiv: hep-th/9601018 (1996).

A. Rovenchak. Two-parametric fractional statistics models for anyons. Eur. Phys. J. B 87, 175 (2014).

https://doi.org/10.1140/epjb/e2014-50171-8

C. Tsallis. What are the numbers that experiments provide? Qu'ımica Nova 17, 468 (1994).

J. Naudts. The q-exponential family in statistical physics. J. Phys.: Conf. Ser. 201, 012003 (2010). https://doi.org/10.1088/1742-6596/201/1/012003

S. Umarov, C. Tsallis, S. Steinberg. On a q-central limit theorem consistent with nonextensive statistical mechanics. Milan J. Math. 76, 307 (2008). https://doi.org/10.1007/s00032-008-0087-y

B. Rosenow, I.P. Levkivskyi, B.I. Halperin. Current correlations from a mesoscopic anyon collider Phys. Rev. Lett. 116, 15 (2016). https://doi.org/10.1103/PhysRevLett.116.156802

H. Bartolomei et al. Fractional statistics in anyon collisions. Science 368, 6487 (2020). https://doi.org/10.1126/science.aaz5601

A. Khare. Fractional Statistics and Quantum Theory (World Scientifi c, 2005). https://doi.org/10.1142/5752

Published

2021-08-04

How to Cite

Sobko, B. (2021). Relationship between the Parameters of the Second Virial Coefficient of Non-Abelian Anyons and the Two-Parametric Fractional Statistics. Ukrainian Journal of Physics, 66(7), 595. https://doi.org/10.15407/ujpe66.7.595

Issue

Section

General physics