Concentration Dependences of Macromolecular Sizes in Aqueous Solutions of Albumins
DOI:
https://doi.org/10.15407/ujpe65.7.619Keywords:
ovine serum albumin, aqueous solution, effective macromolecular radius, cellular modelAbstract
On the basis of experimental data for the shear viscosity in the aqueous solutions of ovine serum albumin and using the cellular model describing the viscosity in aqueous solutions, the concentration dependences of the effective radius of ovine serum albumin macromolecules in the aqueous solutions within a concentration interval of 3.65–25.8 wt% and a temperature interval of 278–318 K at the constant pH = 7.05 are calculated. The concentration and temperature dependences of the effective radii of ovine, bovine, and human serum albumin macromolecules are compared. It is shown that they are partially similar for the solutions of ovine and human serum albumins within concentration intervals of 0.12–0.49 vol% and 0.18–0.48 vol%, respectively, provided an identical acid-base balance (pH) in those solutions. The following conclusions are drawn: (i) the concentration dependences of the effective radii of structurally similar macromolecules of various albumins are similar, but provided an identical pH, and (ii) the dependence of the volume concentration of aqueous albumin solutions on the temperature at the constant radius of a macromolecule confirms the hypothesis about the existence of a dynamic phase transition in aqueous solutions at a temperature of 42 ∘C, at which the thermal motion of water molecules significantly changes.
References
T. Peters, jr. All About Albumin: Biochemistry, Genetics, and Medical Applications (Academic Press, 1996).
A. Bujacz, J.A. Talaj, K. Zielinski, A.J. Pietrzyk-Brzezinska, P. Neumann. Crystal structures of serum albumins from domesticated ruminants and their complexes with 3,5-diiodosalicylic acid. Acta Crystallogr. D 73, 896 (2017). https://doi.org/10.1107/S205979831701470X
Y. Akdogan, J. Reichenwallner, D. Hinderberger. Evidence for water-tuned structural differences in proteins: an approach emphasizing variations in local hydrophilicity. PLoS ONE 7, e45681 (2012). https://doi.org/10.1371/journal.pone.0045681
I. Miller, M. Gemeiner. An electrophoretic study on interactions of albumins of different species with immobilized cibacron blue F3G A. Electrophoresis 19, 2506 (1998). https://doi.org/10.1002/elps.1150191425
Y. Moriyama, D. Ohta, K. Hachiya, Y. Mitsui, K. Takeda. Fluorescence behavior of tryptophan residues of bovine and human serum albumins in ionic surfactant solutions: a comparative study of the two and one tryptophan(s) of bovine and human albumins. J. Protein Chem. 15, 265 (1996). https://doi.org/10.1007/BF01887115
C. Branca, A. Faraone, T. Lokotosh, S. Magazu, G. Maisano, N.P. Malomuzh, P. Migliardo, V. Villari. Diffusive dynamics: self vs. collective behaviour. J. Mol. Liq. 93, 139 (2001). https://doi.org/10.1016/S0167-7322(01)00222-7
N.P. Malomuzh, E.V. Orlov. Static shear viscosity of a bimodal suspension. Ukr. J. Phys. 50, 618 (2005).
E.V. Orlov. Shear viscosity of dispersions of particles with liquid shells. Colloid J. 72, 820 (2010).
https://doi.org/10.1134/S1061933X1006013X
K. Monkos. Determination of some hydrodynamic parameters of ovine serum albumin solutions using viscometric measurements. J. Biol. Phys. 31, 219 (2005). https://doi.org/10.1007/s10867-005-1830-z
G.K. Batchelor. An Introduction to Fluid Dynamics (Cambridge Univ. Press, 2000). https://doi.org/10.1017/CBO9780511800955
O.V. Khorolskyi. The nature of viscosity of polyvinyl alcohol solutions in dimethyl sulfoxide and water. Ukr. J. Phys. 62, 858 (2017). https://doi.org/10.15407/ujpe62.10.0858
O.V. Khorolskyi. Effective radii of macromolecules in dilute polyvinyl alcohol solutions. Ukr. J. Phys. 63, 144 (2018). https://doi.org/10.15407/ujpe63.2.144
H.A. Hussein, A.A. Aamer. Influence of different storage times and temperatures on blood gas and acid-base balance in ovine venous blood. Open Veterin. J. 3, 1 (2013).
V.I. Petrenko, M.V. Avdeev, L. Alm'asy, L.A. Bulavin, V.L. Aksenov, L. Rosta, V.M. Garamus. Interaction of mono-carboxylic acids in benzene studied by small-angle neutron scattering. Colloids and Surfaces A: Physicochemical and Engineering Aspects 337, 91 (2009). https://doi.org/10.1016/j.colsurfa.2008.12.001
M.A. Dar, Wahiduzzaman, M.A. Haque, A. Islam, M.I. Hassan, F. Ahmad. Characterisation of molten globule-like state of sheep serum albumin at physiological pH. Int. J. Biol. Macromol. 89, 605 (2016). https://doi.org/10.1016/j.ijbiomac.2016.05.036
N.P. Malomuzh, L.A. Bulavin, V.Ya. Gotsulskyi, A.A. Guslisty. Characteristic changes in the density and shear viscosity of human blood plasma with varying protein concentration. Ukr. J. Phys. 65, 151 (2020). https://doi.org/10.15407/ujpe65.2.151
L.A. Bulavin, N.P. Malomuzh. Upper temperature limit for the existence of living matter. J. Mol. Liq. 124, 136 (2006). https://doi.org/10.1016/j.molliq.2005.11.027
L.A. Bulavin, N.P. Malomuzh. Dynamic phase transition in water as the most important factor provoking protein denaturation in warm-blooded organisms. Fiz. Zhivogo 18, 16 (2010) (in Russian).
A.I. Fisenko, N.P. Malomuzh. To what extent is water responsible for the maintenance of the life for warm-blooded organisms? Int. J. Mol. Sci. 10, 2383 (2009). https://doi.org/10.3390/ijms10052383
J.M. Khan, S.A. Abdulrehman, F.K. Zaidi, S. Gourinath, R.H. Khan. Hydrophobicity alone can not trigger aggregation in protonated mammalian serum albumins. Phys. Chem. Chem. Phys. 16, 5150 (2014). https://doi.org/10.1039/c3cp54941k
O.V. Khorolskyi. Calculation of the effective macromolecular radii of human serum albumin from the shear viscosity data for its aqueous solutions. Ukr. J. Phys. 64, 287 (2019). https://doi.org/10.15407/ujpe64.4.287
O.V. Khorolskyi, Yu.D. Moskalenko. Calculation of the macromolecular size of bovine serum albumin from the viscosity of its aqueous solutions. Ukr. J. Phys. 65, 41 (2020). https://doi.org/10.15407/ujpe65.1.41
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.