Concentration Dependences of Macromolecular Sizes in Aqueous Solutions of Albumins

Authors

  • L. A. Bulavin Taras Shevchenko National University of Kyiv, Faculty of Physics
  • O. V. Khorolskyi Poltava V.G. Korolenko National Pedagogical University

DOI:

https://doi.org/10.15407/ujpe65.7.619

Keywords:

ovine serum albumin, aqueous solution, effective macromolecular radius, cellular model

Abstract

On the basis of experimental data for the shear viscosity in the aqueous solutions of ovine serum albumin and using the cellular model describing the viscosity in aqueous solutions, the concentration dependences of the effective radius of ovine serum albumin macromolecules in the aqueous solutions within a concentration interval of 3.65–25.8 wt% and a temperature interval of 278–318 K at the constant pH = 7.05 are calculated. The concentration and temperature dependences of the effective radii of ovine, bovine, and human serum albumin macromolecules are compared. It is shown that they are partially similar for the solutions of ovine and human serum albumins within concentration intervals of 0.12–0.49 vol% and 0.18–0.48 vol%, respectively, provided an identical acid-base balance (pH) in those solutions. The following conclusions are drawn: (i) the concentration dependences of the effective radii of structurally similar macromolecules of various albumins are similar, but provided an identical pH, and (ii) the dependence of the volume concentration of aqueous albumin solutions on the temperature at the constant radius of a macromolecule confirms the hypothesis about the existence of a dynamic phase transition in aqueous solutions at a temperature of 42 ∘C, at which the thermal motion of water molecules significantly changes.

References

T. Peters, jr. All About Albumin: Biochemistry, Genetics, and Medical Applications (Academic Press, 1996).

A. Bujacz, J.A. Talaj, K. Zielinski, A.J. Pietrzyk-Brzezinska, P. Neumann. Crystal structures of serum albumins from domesticated ruminants and their complexes with 3,5-diiodosalicylic acid. Acta Crystallogr. D 73, 896 (2017). https://doi.org/10.1107/S205979831701470X

Y. Akdogan, J. Reichenwallner, D. Hinderberger. Evidence for water-tuned structural differences in proteins: an approach emphasizing variations in local hydrophilicity. PLoS ONE 7, e45681 (2012). https://doi.org/10.1371/journal.pone.0045681

I. Miller, M. Gemeiner. An electrophoretic study on interactions of albumins of different species with immobilized cibacron blue F3G A. Electrophoresis 19, 2506 (1998). https://doi.org/10.1002/elps.1150191425

Y. Moriyama, D. Ohta, K. Hachiya, Y. Mitsui, K. Takeda. Fluorescence behavior of tryptophan residues of bovine and human serum albumins in ionic surfactant solutions: a comparative study of the two and one tryptophan(s) of bovine and human albumins. J. Protein Chem. 15, 265 (1996). https://doi.org/10.1007/BF01887115

C. Branca, A. Faraone, T. Lokotosh, S. Magazu, G. Maisano, N.P. Malomuzh, P. Migliardo, V. Villari. Diffusive dynamics: self vs. collective behaviour. J. Mol. Liq. 93, 139 (2001). https://doi.org/10.1016/S0167-7322(01)00222-7

N.P. Malomuzh, E.V. Orlov. Static shear viscosity of a bimodal suspension. Ukr. J. Phys. 50, 618 (2005).

E.V. Orlov. Shear viscosity of dispersions of particles with liquid shells. Colloid J. 72, 820 (2010).

https://doi.org/10.1134/S1061933X1006013X

K. Monkos. Determination of some hydrodynamic parameters of ovine serum albumin solutions using viscometric measurements. J. Biol. Phys. 31, 219 (2005). https://doi.org/10.1007/s10867-005-1830-z

G.K. Batchelor. An Introduction to Fluid Dynamics (Cambridge Univ. Press, 2000). https://doi.org/10.1017/CBO9780511800955

O.V. Khorolskyi. The nature of viscosity of polyvinyl alcohol solutions in dimethyl sulfoxide and water. Ukr. J. Phys. 62, 858 (2017). https://doi.org/10.15407/ujpe62.10.0858

O.V. Khorolskyi. Effective radii of macromolecules in dilute polyvinyl alcohol solutions. Ukr. J. Phys. 63, 144 (2018). https://doi.org/10.15407/ujpe63.2.144

H.A. Hussein, A.A. Aamer. Influence of different storage times and temperatures on blood gas and acid-base balance in ovine venous blood. Open Veterin. J. 3, 1 (2013).

V.I. Petrenko, M.V. Avdeev, L. Alm'asy, L.A. Bulavin, V.L. Aksenov, L. Rosta, V.M. Garamus. Interaction of mono-carboxylic acids in benzene studied by small-angle neutron scattering. Colloids and Surfaces A: Physicochemical and Engineering Aspects 337, 91 (2009). https://doi.org/10.1016/j.colsurfa.2008.12.001

M.A. Dar, Wahiduzzaman, M.A. Haque, A. Islam, M.I. Hassan, F. Ahmad. Characterisation of molten globule-like state of sheep serum albumin at physiological pH. Int. J. Biol. Macromol. 89, 605 (2016). https://doi.org/10.1016/j.ijbiomac.2016.05.036

N.P. Malomuzh, L.A. Bulavin, V.Ya. Gotsulskyi, A.A. Guslisty. Characteristic changes in the density and shear viscosity of human blood plasma with varying protein concentration. Ukr. J. Phys. 65, 151 (2020). https://doi.org/10.15407/ujpe65.2.151

L.A. Bulavin, N.P. Malomuzh. Upper temperature limit for the existence of living matter. J. Mol. Liq. 124, 136 (2006). https://doi.org/10.1016/j.molliq.2005.11.027

L.A. Bulavin, N.P. Malomuzh. Dynamic phase transition in water as the most important factor provoking protein denaturation in warm-blooded organisms. Fiz. Zhivogo 18, 16 (2010) (in Russian).

A.I. Fisenko, N.P. Malomuzh. To what extent is water responsible for the maintenance of the life for warm-blooded organisms? Int. J. Mol. Sci. 10, 2383 (2009). https://doi.org/10.3390/ijms10052383

J.M. Khan, S.A. Abdulrehman, F.K. Zaidi, S. Gourinath, R.H. Khan. Hydrophobicity alone can not trigger aggregation in protonated mammalian serum albumins. Phys. Chem. Chem. Phys. 16, 5150 (2014). https://doi.org/10.1039/c3cp54941k

O.V. Khorolskyi. Calculation of the effective macromolecular radii of human serum albumin from the shear viscosity data for its aqueous solutions. Ukr. J. Phys. 64, 287 (2019). https://doi.org/10.15407/ujpe64.4.287

O.V. Khorolskyi, Yu.D. Moskalenko. Calculation of the macromolecular size of bovine serum albumin from the viscosity of its aqueous solutions. Ukr. J. Phys. 65, 41 (2020). https://doi.org/10.15407/ujpe65.1.41

Published

2020-07-15

How to Cite

Bulavin, L. A., & Khorolskyi, O. V. (2020). Concentration Dependences of Macromolecular Sizes in Aqueous Solutions of Albumins. Ukrainian Journal of Physics, 65(7), 619. https://doi.org/10.15407/ujpe65.7.619

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 > >>