Effects of Reservoir Input Fields on the Non-Classical Features of Quantum Beat Cascade Laser

Authors

  • S. Eshete Department of Physics, Debre Tabor University

DOI:

https://doi.org/10.15407/ujpe67.1.34

Keywords:

super-Poissonian, squeezed state, quantum features, light-matter interaction

Abstract

The quantum features and quantum statistical properties of a cavity-mode radiation emitted from the coherently prepared degenerate three-level laser have been investigated, by using the standard quantum electrodynamics approach and accounting for the light-matter interaction. We considered the vacuum reservoir, squeezed vacuum reservoir, and thermal reservoir to see the effect of reservoir input fields on the statistical and squeezing nature on the cavity radiation. It is found that the squeezed vacuum reservoir has enhancement effect on the squeezing property, as well as the brightness of the cavity radiation compared to those of the vacuum and thermal reservoirs. It is also observed that the radiation emitted from the cavity is in the squeezed state with super-Poissonian photon statistics regardless of the reservoir nature.

References

H. de Riedmatten, M. Afzelius, M. Staudt, C. Simon, N. Gisin. A solid-state light-matter interface at the singlephoton level. Nature 456, 773 (2008).

https://doi.org/10.1038/nature07607

Q. Bin, Lu, L. Zheng, S. Bin, Y. Wu. Detection of lightmatter interaction in the weak-coupling regime by quantum light. Phys. Rev. A 97, 043802 (2018).

https://doi.org/10.1103/PhysRevA.97.043802

C. Wu, T. Wu, Y. Yeh, P. Liu, C. Chang, C. Liu, T. Cheng, C. Chuu. Bright single photons for light-matter interaction. Phys. Rev. A 96, 023811 (2017).

https://doi.org/10.1103/PhysRevA.96.023811

A. Barfuss, J. Kolb, L. Thiel, J. Teissier, M. Kasperczyk, P. Maletinsky. Phase-controlled coherent dynamics of a single spin under closed-contour interaction. Nat. Phys. 14, 1087 (2018).

https://doi.org/10.1038/s41567-018-0231-8

T. Galfskya, J. Gua, E.E. Narimanov, V.M. Menon. Photonic hypercrystals for control of light-matter interactions. PNAS 114, 5125 (2017).

https://doi.org/10.1073/pnas.1702683114

G. Gunter, A.A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber. Sub-cycle switch-on of ultrastrong light-matter interaction. Nature 458, 178 (2009).

https://doi.org/10.1038/nature07838

M.O. Scully. Correlated spontaneous emission Lasers: quenching of quantum fluctuations in the relative phase angle. Phys. Rev. Lett. 55, 2802 (1985).

https://doi.org/10.1103/PhysRevLett.55.2802

A.S. Manka, H.M. Doss, L.M. Narducci, P. Ru, G.-L. Oppo. Spontaneous emission and absorption properties of a driven three-level system: The Λ and cascade models. Phys. Rev. A 43, 3748 (1991).

https://doi.org/10.1103/PhysRevA.43.3748

Ying Wu, Xiaoxue Yang. Effective two-level model for a three-level atom in the Ξ configuration. Phys. Rev. A 56, 2443 (1997).

https://doi.org/10.1103/PhysRevA.56.2443

H. Wang, D. Goorskey, M. Xiao. Bistability and instability of three-level atoms inside an optical cavity. Phys. Rev. A 65, 011801 (2001).

https://doi.org/10.1103/PhysRevA.65.011801

A. Joshi, A. Brown, H. Wang, M. Xiao. Controlling optical bistability in a three-level atomic system. Phys. Rev. A 67, 041801 (2003).

https://doi.org/10.1103/PhysRevA.67.041801

A. Joshi, W. Yang, M. Xiao. Effect of quantum interference on optical bistability in the three-level V-type atomic system. Phys. Rev. A 68, 015806 (2003).

https://doi.org/10.1103/PhysRevA.68.015806

A. Joshi, M. Xiao. Optical multistability in three-level atoms inside an optical ring cavity. Phys. Rev. Lett. 91, 143904 (2003).

https://doi.org/10.1103/PhysRevLett.91.143904

L.V. Doai, D.X. Khoa, N.H. Bang. EIT enhanced selfKerr nonlinearity in the three-level lambda system under Doppler broadening. Phys. Scr. 90, 045502 (2015).

https://doi.org/10.1088/0031-8949/90/4/045502

M.J. Faghihi1, M.K. Tavassoly. Quantum entanglement and position-momentum entropic squeezing of a moving Lambda-type three-level atom interacting with a singlemode quantized field with intensity-dependent coupling. J. Phys. B: At. Mol. Opt. Phys. 46, 145506 (2013).

https://doi.org/10.1088/0953-4075/46/14/145506

M.R. Ferguson, Z. Ficek, B.J. Dalton. Effect of a squeezed vacuum on coherent population trapping in a three-level lambda system. J. Mod. Opt. 42, 679 (1995).

https://doi.org/10.1080/09500349514550621

H. Ting, L. Xiu-Min, C. Zhuo-Liang, G. Guang-Can. Dynamic behavior of lambda-type three-Level atoms and twomode cavity field. Commun. Theor. Phys. 45, 712 (2006).

https://doi.org/10.1088/0253-6102/45/4/028

X.Q. Jiang, X.D. Sun. Spontaneous emission of a threelevel lambda-type atom coupled to separate reservoirs. Opt. Commun. 282, 922 (2009).

https://doi.org/10.1016/j.optcom.2008.11.003

A.-B.A. Mohamed1, H. Eleuch. Coherence and information dynamics of a Lambda-type three-level atom interacting with a damped cavity field. Eur. Phys. J. Plus 132, 75 (2017).

https://doi.org/10.1140/epjp/i2017-11360-9

M. Yamanishi. Theory of intrinsic linewidth based on fluctuation-dissipation balance for thermal photons in THz quantum-cascade lasers.Opt. Express 20, 28466 (2012).

https://doi.org/10.1364/OE.20.028465

B. Parvin, R. Malekfar. Two different regimes in a V-type three-level atom trapped in an optical cavity. J. Mod. Phys. 59, 848 (2012).

https://doi.org/10.1080/09500340.2012.676096

F. Carreno, O.G. Calderon, M.A. Anton, I. Gonzalo. Superluminal and slow light in lambda-type three-level atoms via squeezed vacuum and spontaneously. Phys. Rev. A 71, 063805 (2005).

https://doi.org/10.1103/PhysRevA.71.063805

S. Tesfa. Entanglement amplification in a nondegenerate three-level cascade laser. Phys. Rev. A 74, 043816 (2006).

https://doi.org/10.1103/PhysRevA.74.043816

X.D. Sun, X.Q. Jiang, J.H. Wu, C.F. Hou. Decay properties of a three-level lambda-type atom in three-dimensional photonic crystals. J. Phys. B: At. Mol. Opt. Phys. 40, 1645 (2007).

https://doi.org/10.1088/0953-4075/40/10/001

S. Tesfa. Effects of decoherence on entanglement in a correlated emission laser. J. Phys. B: At. Mol. Opt. Phys. 40, 2373 (2007).

https://doi.org/10.1088/0953-4075/40/12/013

E. Alebachew. Enhanced squeezing and entanglement in a non-degenerate three-level cascade laser with injected squeezed light. Opt. Commun. 280, 133 (2007).

https://doi.org/10.1016/j.optcom.2007.08.017

E. Alebachew. Bright entangled light from two-mode cascade laser. Opt. Commun. 281, 6124 (2008).

https://doi.org/10.1016/j.optcom.2008.08.052

T. Abebe, N. Gemechu, C. Gashu, K. Shogile, S. Hailemariam, S. Adisu. The quantum analysis of nonlinear optical parametric processes with thermal reservoirs. Int. J. Opt. 2020, 1 (2020).

https://doi.org/10.1155/2020/7198091

S. Eshete. Quantum enhancement of the optical behavior for V-type open atomic system. Physics Open 9, 100076 (2021).

https://doi.org/10.1016/j.physo.2021.100076

S. Eshete. The role of phase-dependent atomic coherence on refractive index of atomic medium for energy harvesting systems. Int. J. Theor. Phys. 60, 2283 (2021).

https://doi.org/10.1007/s10773-021-04848-3

C.W. Gardiner. Quantum Noise, Vol. 1, 3rd Edition (Springer-Verlag, 1991) [ISBN: 3-540-22301-0].

https://doi.org/10.1007/978-3-662-09642-0

W. Zhang, P.L. Chu. Sub-Poissonian and super-Poissonian photon statistics in a twin-core doped optical fiber. IEEE J. Quant. Elect. 30, 2836 (1994).

https://doi.org/10.1109/3.362726

B. Ann, Y. Song, J. Kim, D. Yang, K. An. Observation of scalable sub-Poissonian-field lasing in a microlaser. Sci. Rep. 9, 17110 (2019).

https://doi.org/10.1038/s41598-019-53525-3

Y. He, E. Barkai. Super- and sub-Poissonian photon statistics for single molecule spectroscopy. J. Chem. Phys. 122, 184703 (2005).

https://doi.org/10.1063/1.1888388

H. Prakash, D.K. Mishra. Higher order sub-Poissonian photon statistics and their use in detection of Hong and Mandel squeezing and amplitude-squared squeezing. J. Phys. B: At. Mol. Opt. Phys. 39, 2291 (2006).

https://doi.org/10.1088/0953-4075/39/9/014

C.L. Alzar, L.S. Cruz, J.G. Gomez, M.F. Santos, P. Nussenzveig. Super-Poissonian intensity fluctuations and correlations between pump and probe fields in electromagnetically induced transparency. Europhys. Lett. 61, 485 (2003).

https://doi.org/10.1209/epl/i2003-00155-0

Downloads

Published

2022-02-11

How to Cite

Eshete, S. (2022). Effects of Reservoir Input Fields on the Non-Classical Features of Quantum Beat Cascade Laser. Ukrainian Journal of Physics, 67(1), 34. https://doi.org/10.15407/ujpe67.1.34

Issue

Section

Optics, atoms and molecules