Longitudinal and Transverse Electrocaloric Effects in Glycinium Phosphite Ferroelectric


  • A.S. Vdovych Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine




ferroelectrics, phase transition, dielectric permittivity, electric field effect, electrocaloric effect


A modified proton ordering model of glycinium phosphite ferroelectric, which involves the piezoelectric coupling of the proton and lattice subsystems, is used for the investigation of the electrocaloric effect. The model also accounts for the dependence of the effective dipole moment on a hydrogen bond on an order parameter, as well as a splitting of parameters of the interaction between pseudospins in the presence of shear stresses. In the two-particle cluster approximation, the influence of longitudinal and transverse electric fields on components of the polarization vector and the dielectric permittivity tensor, as well as on thermal characteristics of the crystal, is calculated. Longitudinal and transverse electrocaloric effects are studied. The calculated electrocaloric temperature change is quite small, about 1K; however, it can change its sign under the influence of a transverse field.


S. Dacko, Z. Czapla, J. Baran, M. Drozd. Ferroelectricity in Gly·H3PO3 crystal. Phys. Lett. A 223, 217 (1996).


J. Baran, G. Bator, R. Jakubas, M. Sledz. Dielectric dispersion and vibrational studies of a new ferroelectric,

glycinium phosphite crystal. J. Phys.: Condens. Matter 8, 10647 (1996).


M.-T. Averbuch-Pouchot. Structures of glycinium phosphite and glycylglycinium phosphite. Acta Crystalogr. C 49, 815 (1993).


F. Shikanai, M. Komukae, Z. Czapla, T. Osaka. Crystal structure of NH3CH2COOH×H2PO3 in the ferroelectric phase. J. Phys. Soc. Jpn. 71, 498 (2002).


H. Taniguchi, M. Machida. N. Koyano. Neutron diff raction study of crystal structures of glycinium phosphite

NH3CH2COOH×H2PO3 in paraelectric and ferroelectric phases. J. Phys. Soc. Jpn. 72, 1111 (2003).


I. Stasyuk, Z. Czapla, S. Dacko, O. Velychko. Proton ordering model of phase transitions in hydrogen bonded ferrielectric type systems: The GPI crystal. Condens. Matter Phys. 6, 483 (2003).


I. Stasyuk, Z. Czapla, S. Dacko, O. Velychko. Dielectric anomalies and phase transition in glycinium phosphite crystal under the infl uence of a transverse electric field. J. Phys.: Condens. Matter 16, 1963 (2004).


N. Yasuda, T. Sakurai, Z. Czapla. Effects of hydrostatic pressure on the paraelectric-ferroelectric phase transition

in glycine phosphite (Gly·H3PO3). J. Phys.: Condens Matter 9, L347 (1997).


T. Kikuta, Y. Takemoto, T. Yamazaki, N. Nakatani. Influence of uniaxial pressure on the phase transition of partially deuterated glycinium phosphite. Ferroelectrics 302, 99 (2004).


I. Stasyuk, O. Velychko. Theory of electric field influence on phase transition in glycine phosphite. Ferroelectrics 300, 121 (2004).


I.R. Zachek, Ya. Shchur, R.R. Levitskii, A.S. Vdovych. Thermodynamic properties of ferroelectric NH3CH2COOH · H2PO3 crystal. Physica B 520, 164 (2017).


I.R. Zachek, R.R. Levitskii, A.S. Vdovych, I.V. Stasyuk. Influence of electric fields on dielectric properties of GPI ferroelectric. Condens. Matter Phys. 20, 23706 (2017).


I.R. Zachek, R.R. Levitskii, A.S. Vdovych. Influence of hydrostatic pressure on thermodynamic characteristics of

NH3CH2COOH·H2PO3 type ferroelectric materials. Condens. Matter Phys. 20, 43707 (2017).


I.R. Zachek, R.R. Levitskii, A.S. Vdovych. The influence of uniaxial pressures on thermodynamic properties of the GPI ferroelectric. J. Phys. Stud. 21, 1704 (2017).


I.R. Zachek, R.R. Levitskii, A.S. Vdovych, O.B. Bilenka. Dynamic properties of NH3CH2COOH·H2PO3 ferroelectric. Condens. Matter Phys. 21, 13704: 1 (2018).


R. Tchukvinskyi, R. Cach, Z. Czapla, S. Dacko. Characterization of ferroelectric phase transition in GPI crystal. Phys. Stat. Sol. (a) 165, 309 (1998).


A.S. Vdovych, I.R. Zachek, R.R. Levitskii. Influence of longitudinal electric fi eld on thermodynamic properties of

NH3CH2COOH·H2PO3 ferroelectric. Ukr. J. Phys. 63, 350 (2018).


I.R. Zachek, R.R. Levitskii, A.S. Vdovych. Deformation effects in glycinium phosphite ferroelectric. Condens. Matter Phys. 21, 33702 (2018).


J. Nayeem, T. Kikuta, N. Nakatani, F. Matsui, S.-N. Takeda, K. Hattori, H. Daimon. Ferroelectric phase transition character of glycine phosphite. Ferroelectrics 332, 13 (2006).


F. Shikanai, J. Hatori, M. Komukae, Z. Czapla, T. Osaka. Heat capacity and thermal expansion of NH3CH2COOH××H2PO3. J. Phys. Soc. Jpn. 73, 1812 (2004).


J. Nayeem, H. Wakabayashi, T. Kikuta, T. Yamazaki, N. Nakatani. Ferroelectric properties of deuterated glycine phosphite. Ferroelectrics 269, 153 (2002). https://doi.org/10.1080/713716051

M. Wiesner. Piezoelectric properties of GPI crystals. Phys. Stat. Sol (b) 238, 68 (2003). https://doi.org/10.1002/pssb.200301750

N. Yasuda, A. Kaneda, Z. Czapla, Effects of hydrostatic pressure on the paraelectric-ferroelectric phase transition in deuterated glycinium phosphite crystals. J. Phys.: Condens Matter 9, L447 (1997). https://doi.org/10.1088/0953-8984/9/33/002

Y. Shchur, A. Kityk. Piezoelectric properties of GPI crystals Phys. Status Solidi B 252, 476 (2014). https://doi.org/10.1002/pssb.201451382

A.S. Vdovych, I.R. Zachek, R.R. Levitskii, I.V. Stasyuk. Field-deformational eff ects in GPI ferroelectric materials. Phase Transitions 92, 430 (2019). https://doi.org/10.1080/01411594.2019.1590831




How to Cite

Vdovych, A. (2021). Longitudinal and Transverse Electrocaloric Effects in Glycinium Phosphite Ferroelectric. Ukrainian Journal of Physics, 66(5), 412. https://doi.org/10.15407/ujpe66.5.412



Physics of magnetic phenomena and physics of ferroics