Large Scale Shell Model Calculations of the Negative-Parity States Structure in 24Mg Nucleus

Authors

  • A.A. Al-Sammarraie Department of Physics, Faculty of Education, University of Samarra
  • F.A. Ahmed Department of Physics, Faculty of Science, University of Diyala
  • A.A. Okhunov Department of Science in Engineering, Faculty of Engineering, International Islamic University Malaysia Kuala Lumpur

DOI:

https://doi.org/10.15407/ujpe66.4.293

Keywords:

PSDPF, negative-parity states, electron scattering, shell model, form factors, 24Mg

Abstract

The negative-parity states of 24Mg nucleus are investigated within the shell model. We are based on the calculations of energy levels, total squared form factors, and transition probability using the p-sd-pf (PSDPF) Hamiltonian in a large model space (0 + 1) hW. The comparison between the experimental and theoretical states showed a good agreement within a truncated model space. The PSDPF-based calculations successfully reproduced the data on the total squared form factors and transition probabilities of the negative-parity states in 24Mg nucleus. These quantities depend on the one-body density matrix elements that are obtained from the PSDPF Hamiltonian. The wave functions of radial one-particle matrix elements calculated with the harmonic-oscillator potential are suitable to predict experimental data by changing the center-of-mass corrections.

References

P.J. Davies et al. Toward the limit of nuclear binding on the N = Z line: Spectroscopy of 96Cd. Phys. Rev. C 99, 021302 (2019).

Eunja Ha, Myung-Ki Cheoun, H. Sagawa. Eff ects of the Coulomb and the spin-orbit interaction in a deformed mean fi eld on the pairing correlations in N = Z nuclei. Phys. Rev. C 99, 064304 (2019).

https://doi.org/10.1103/PhysRevC.99.064304

T. Inakura, S. Mizutori. Rod-shaped rotational states in N = Z even-even nuclei from 12C to 32S. Phys. Rev. C 98, 044312 (2018).

https://doi.org/10.1103/PhysRevC.98.044312

H. Morita, Y. Kanada-En'yo. Low-energy Gamow-Teller transitions in deformed N = Z odd-odd nuclei. Phys. Rev. C 98, 034307 (2018).

https://doi.org/10.1103/PhysRevC.98.034307

E. Ha, M.-K. Cheoun, H. Sagawa. Spin singlet and spin triplet pairing correlations on shape evolution in sd-shell N = Z Nuclei. Phys. Rev. C 97, 024320 (2018).

https://doi.org/10.1103/PhysRevC.97.024320

K. Kaneko, Y. Sun, G. de Angelis. Enhancement of high-spin collectivity in N = Z nuclei by the isoscalar neutron-

proton pairing. Nucl. Phys. A 957, 144 (2017).

https://doi.org/10.1016/j.nuclphysa.2016.08.007

I. Wiedenh¨over, A.H. Wuosmaa, R.V.F. Janssens, C.J. Lister, M.P. Carpenter, H. Amro, P. Bhattacharyya, B.A. Brown, J. Caggiano, M. Devlin, A. Heinz, F.G. Kondev, T. Lauritsen, D.G. Sarantites, S. Siem, L.G. Sobotka, A. Sonzogni. Identifi cation of the Iп = 10+ yrast rotational state in 24Mg. Phys. Rev. Lett. 87, 142502 (2001).

https://doi.org/10.1103/PhysRevLett.87.142502

I. Wiedenh¨over, A.H. Wuosmaa, R.V.F. Janssens, C.J. Lister, M.P. Carpenter, Janssens, R.V.F. Amro, H. Caggiano, J. Heinz, A. Kondev, F.G. Lauritsen, T. Siem, S. Sonzogni, A. Bhattacharyya, P. Devlin, M. Sarantites, D.G. Sobotka. Measurement and analysis of quadruple (ayy) angular correlations for high spin states of 24Mg. Nucl. Phys. A 682, 22 (2001).

https://doi.org/10.1016/S0375-9474(00)00617-5

E.S. Diff enderfer, L.T. Baby, D. Santiago-Gonzalez, N. Ahsan, A. Rojas, A. Volya, I. Wiedenh¨over, A.H. Wuosmaa, M.P. Carpenter, R.V.F. Janssens, C.J. Lister, M. Devlin, D.G. Sarantites, L.G. Sobotka, Y. Utsuno, M. Horoi. High-spin spectrum of 24Mg studied through multiparticle angular correlations. Phys. Rev. C 85, 034311 (2012).

https://doi.org/10.1103/PhysRevC.85.034311

M. Bouhelal, F. Haas, E. Caurier, F. Nowacki, A. Bouldjedrib. Negative-parity intruder states of the neutron-rich N = 20, Z = 14-16 isotones: a 1 ~ w shell model description. Acta. Phys. Pol. B 40, 639 (2009).

https://doi.org/10.1140/epja/i2009-10782-9

P. Marley, D.G. Jenkins, P.J. Davies, A.P. Robinson, R. Wadsworth, C.J. Lister, M.P. Carpenter, R.V.F. Janssens, C.L. Jiang, T.L. Khoo, T. Lauritsen, D. Seweryniak, S. Zhu, S. Courtin, F. Haas, D. Lebhertz, M. Bouhelal, J.C. Lighthall, A.H. Wuosmaa, D. O'Donnell. High-resolution spectroscopy of decay pathways in the 12C(12C,y) reaction. Phys. Rev. C 84, 044332 (2011).

https://doi.org/10.1103/PhysRevC.84.044332

D.G. Jenkins, M. Bouhelal, S. Courtin, M. Freer, B.R. Fulton, F. Haas, R.V.F. Janssens, T.L. Khoo, C.J. Lister, E.F. Moore, W.A. Richter, B. Truett, A.H. Wuosmaa. y-ray spectroscopy of the A = 23, T = 1/2 nuclei 23Na and 23Mg: High-spin states, mirror symmetry, and applications to nuclear astrophysical reaction rates. Phys. Rev. C 87, 064301 (2013).

https://doi.org/10.1103/PhysRevC.87.064301

M. Bouhelal, F. Haas, E. Caurier, F. Nowacki, A. Bouldjedri. PSDPF interaction to describe the 1 ~ w intruder

states in sd shell nucleiNucl. Phys. A 864, 113 (2011).

https://doi.org/10.1016/j.nuclphysa.2011.06.026

M. Bouhelal, F. Haas, E. Caurier, F. Nowacki, A. Bouldjedri. PSDPF interaction to describe the 1ћ? intruder states in sd shell nucleiNucl. Phys. Rev. C 96, 044304 (2017).

R. S. Lubna, Vandana Tripathi, S.L. Tabor, P.-L. Tai, K. Kravvaris, P.C. Bender, A. Volya, M. Bouhelal, C.J. Chiara, M.P. Carpenter, R.V.F. Janssens, T. Lauritsen, E.A. McCutchan, S. Zhu, R.M. Clark, P. Fallon, A.O. Macchiavelli, S. Paschalis, M. Petri, W. Reviol, D.G. Sarantites. Intruder confi gurations of excited states in the neutron-rich isotopes 33P and 34P. Phys. Rev. C 97, 044312 (2018).

https://doi.org/10.1103/PhysRevC.97.044312

S. Aydin, M. Ionescu-Bujor, G.Tz. Gavrilov, B.I. Dimitrov, S.M. Lenzi, F. Recchia, D. Tonev, M. Bouhelal, F. Kavillioglu, P. Pavlov, D. Bazzacco, P.G. Bizzeti, A.M. Bizzeti-Sona, G. de Angelis, I. Deloncle, E. Farnea, A. Gadea, A. Gottardo, N. Goutev, F. Haas, T. Huyuk, H. Laftchiev, S. Lunardi, Tz.K. Marinov, D. Mengoni, R. Menegazzo, C. Michelagnoli, D.R. Napoli, P. Petkov, E. Sahin, P.P. Singh, E.A. Stefanova, C.A. Ur, J.J. Valiente-Dob'on, M.S. Yavahchova. High-spin states and life-times in 33S and shell-model interpretation in the sd -fp space. Phys. Rev. C 96, 024315 (2017).

B. Fu, M. Seidlitz, A. Blazhev, M. Bouhelal, F. Haas, P. Reiter, K. Arnswald, B. Birkenbach, C. Fransen, G. Friessner, A. Hennig, H. Hess, R. Hirsch, L. Lewandowski, D. Schneiders, B. Siebeck, T. Steinbach, T. Thomas, A. Vogt, A. Wendt, K. Wolf, K.O. Zell. y-ray spectroscopy of 33P and 33S after fusion-evaporation reactions. Phys. Rev. C 94, 034318 (2016).

https://doi.org/10.1103/PhysRevC.94.034318

A. Radhi, Ali A. Alzubadi, A.H. Ali. Magnetic dipole moments, electric quadrupole moments, and electron scattering form factors of neutron-rich sd- pf cross-shell nuclei. Phys. Rev. C 97, 064312 (2018).

https://doi.org/10.1103/PhysRevC.97.064312

B.A. Brown, A. Etchegoyen, W.D. Rae, N.S. Godwin, W.A. Richter, C.H. Zimmerman, W.E. Ormand, J.S. Winfi eld. MSU-NSCL Report No. 524, 1985 (unpublished).

S. Cohen, D. Kurath. Spectroscopic factors for the 1p shell. Nucl. Phys. A 101, 1 (1967).

https://doi.org/10.1016/0375-9474(67)90285-0

B.A. Brown, W.A. Richter. New "USD" Hamiltonians for the sd shell. Phys. Rev. C 74, 034315 (2006).

https://doi.org/10.1103/PhysRevC.74.034315

E.K. Warburton, B.A. Brown. Eff ective interactions for the 0p1s0d nuclear shell-model space. Phys. Rev. C 46, 923 (1992).

https://doi.org/10.1103/PhysRevC.46.923

S. Nummela, P. Baumann, E. Caurier, P. Dessagne, A. Jokinen, A. Knipper, G. Le Scornet, C. Mieh'e, F. Nowacki, M. Oinonen, Z. Radivojevic, M. Ramdhane, G. Walter, J. Ayst¨o. Spectroscopy of 34?35Si by B decay: sd -fp shell gap and single-particle states. Phys. Rev. C 63, 044316 (2001).

https://doi.org/10.1103/PhysRevC.63.044316

A.A. Al-Sammarraie, F.I. Sharrad, H.A. Kassim. Nuclear structure for 24Mg within sd-shell model space Hamiltonians. Armenian Journal of Physics 8, 170 (2015).

R.E. Tribble, G.T. Garvey, J.R. Comfort. Particle-hole nature of the two lowest 3-states in 24Mg. Phys. Lett. B 44, 366 (1973).

https://doi.org/10.1016/0370-2693(73)90408-5

http://www.nndc.bnl.gov/

R.B. Firestone. Nuclear Data Sheets for A = 24. Nucl. Data Sheets 108, 2319 (2007).

https://doi.org/10.1016/j.nds.2007.10.001

F.I. Sharrad. Binding energy and B(E2; 4+1→ 2+1) calculations for nuclei with A = 20. AIP Conf. & Proc. 1528, 376 (2013).

https://doi.org/10.1063/1.4803629

H. Zarek, S. Yen, B.O. Pich, T.E. Drake, C. F. Williamson, S. Kowalski, C.P. Sargent. Inelastic electron scattering to

negative-parity states of 24Mg. Phys. Rev. C 29, 1664 (1984).

https://doi.org/10.1103/PhysRevC.29.1664

A.A. Al-Sammarraie, M.L. Inche Ibrahim, M.A. Saeed, F.I. Sharrad, H.A. Kassim. Inelastic electric and magnetic

electron scattering form factors of 24Mg nucleus: Role of g-factors. Int. J. Mod. Phys. E 26, 1750032 (2017).

https://doi.org/10.1142/S021830131750032X

B.A. Brown. Lecture Notes in Nuclear Structure Physics (Michigan State Univ., 2011).

A.A. Al-Sammarraie, F.I. Sharrad, N. Yusof, H.A. Kassim. Longitudinal and transverse electron-nucleus scattering form factors of 25Mg. Phys. Rev. C 92, 034327 (2015).

https://doi.org/10.1103/PhysRevC.92.034327

B.A. Brown, B.H. Wildenthal, C.F. Williamson, F.N. Rad, S. Kowalski, Hall Crannell, J.T.O' Brien. Shell-model analysis of high-resolution data for elastic and inelastic electron scattering on 19F. Phys. Rev. C 32, 1127 (1985).

https://doi.org/10.1103/PhysRevC.32.1127

H. Chjandra, G. Sauer. Relativistic corrections to the elastic electron scattering from 208Pb. Phys. Rev. C 13, 245 (1976).

https://doi.org/10.1103/PhysRevC.13.245

L.J. Tassie, F.C. Barker. Application to electron scattering of center-of-mass eff ects in the nuclear shell model. Phys. Rev. 111, 940 (1958).

https://doi.org/10.1103/PhysRev.111.940

D. Branford, N. Gardner, I.F. Wright. Evidence for negative-parity rotational bands in 24Mg. Phys. Lett. 36, 456 (1971). https://doi.org/10.1016/0370-2693(71)90528-4

A. Johnston, T.E. Drake. A study of 24Mg by inelastic electron scattering. J. Phys. A: Math., Nucl. Gen. 7, 898 (1974) (un available online). https://doi.org/10.1088/0305-4470/7/8/004

B.T. Lawergren, A.T.G. Fergusono, G.C. Morrision. States with T = 1 in 20Ne, 24Mg and 28Si. Nucl. Phys. A 108, 325 (1968). https://doi.org/10.1016/0375-9474(68)90095-X

B.T. Lawergren, A.T.G. Fergusono, G.C. Morrision. States with T = 1 in 20Ne, 24Mg and 28Si. Nucl. Phys. A 108, 325 (1968).

Downloads

Published

2021-05-13

How to Cite

Al-Sammarraie, A., Ahmed, F., & Okhunov, A. (2021). Large Scale Shell Model Calculations of the Negative-Parity States Structure in 24Mg Nucleus. Ukrainian Journal of Physics, 66(4), 293. https://doi.org/10.15407/ujpe66.4.293

Issue

Section

General physics