A First-Principles Study of Structure, Elastic and Electronic Properties of GeTiO3 as Environmentally Innocuous Ferroelectric Perovskites


  • G.K. Shiferaw Department of Physics, Wollega University
  • M.W. Menberu Department of Physics, Jimma University




density functional theory, elastic properties, electronic structure, spontaneous polarization, GeTiO3 compound


The structural parameters, elastic properties, spontaneous polarization, electronic band structure, and density of states (DOS) of GeTiO3 in tetragonal phase have been studied computationally using pseudopotential plane-wave (PP-PW) method based on the density functional theory (DFT). The generalized gradient approximation (GGA) was used to estimate the exchange-correlation energies. The equilibrium lattice parameter, unit cell volume, bulk modulus and its derivative are obtained and compared with the available theoretical data. The elastic characteristics such as elastic constants, Poisson’s ratio, elastic modulus, and anisotropy factor are obtained in the pressure range 0–50 GPa. Our computed results of elastic constant satisfy Born’s stability criterion. In view of Pugh’s prediction standard, the material is taken as ductile. Once the elastic constant is calculated, the Debye temperature of GeTiO3 compound is also evaluated from the average sound velocity. The density of states, band structures, and charge-density distribution are discussed and compared with previous computational results. The calculation within Berry’s phase approach indicate a high spontaneous polarization of tetragonal GeTiO3 (1.125 C/m2). Thus, the substance is identifi ed as a promising environmentally friendly ferroelectric material.


J.M.P. Martirez, E.H. Morales, W.A. Saidi, D.A. Bonnell, A.M. Rappe. Atomic and electronic structure of the BaTiO3 (001) surface reconstruction. Phys. Rev. Lett. 109, 256802 (2012).


D.G. Schlom, L. Chen, C. Eom, K.M. Rabe, S.K. Streiffer, J. Triscone. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589 (2007).


H. Salehi, S.M. Hosseini, N. Shahtahmasebi. First-principles study of the electronic structure of BaTiO3 using different approximations. Chin. J. Phys. 42, 619 (2004).

D. Bagayoko, G.L. Zhao, J.D. Fan, J.T. Wang. Ab initio calculations of the electronic structure and optical properties of ferroelectric tetragonal. J. Phys.: Condens. Matter 10, 5645 (1998).


S.P. More, R.J. Topare. The review of various synthesis methods of barium titanate with the enhanced dielectric properties. In AIP Conference Proceedings 1728, 020560, (2016).


N.H. Hussin, M.F.M. Taib, M.H. Samat, O.H. Hassan, M.A. Yahya. Study of structural, electronic and optical properties of lanthanum doped perovskite PZT using density functional theory. Appl. Mech. Mater. 864, 127 (2017).


N.A. Spaldin, M. Fiebig. The renaissance of magnetoelectric multiferroics. Science 309, 391 (2005).


P. Hohenberg, W. Kohn. Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).


W. Kohn, L.J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1964).


M.F.M. Taib, M.K. Yaakob, F.W. Badrudin, T.I.T. Kudin, O.H. Hassan, M.Z.A. Yahya. First-principles calculation of

the structural, elastic, electronic and lattice dynamics of GeTiO3. Ferroelectrics 452, 122 (2013).


M.K. Yaakob, M.F.M. Taib, M.A. Yahya. First principle study of dynamical properties of a new perovskite material based on GeTiO3. Appl. Mech. Mater. 501, 352 (2012).


M.F.M. Taib, M.K. Yaakob, M.S.A. Rasiman, F.W. Badrudin, O.H. Hassan, M.Z.A. Yahya. Comparative study of cubic Pm3m between SnZrO3 and PbZrO3 by first principles calculation. In 2012 IEEE Colloquium on Humanities, Science and Engineering, 713 (2012).

A.I. Lebedev. Ab initio calculations of phonon spectra in ATiO3 perovskite crystals (A = Ca, Sr, Ba, Ra, Cd, Zn, Mg, Ge, Sn, Pb). Phys. Solid State 51, 362 (2009).


C. Ronald, P. Ganesh. Class of pure piezoelectric materials. U.S. Patent No. 8,039,131 (2011).

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra et al. Quantum espresso: A modular and open-source software

project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009).

J.P. Perdew, K. Burke, M. Ernzerho. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).


D.R. Hamann, M. Schluter, C. Chiang. Norm-conserving pseudopotentials. Phys. Rev. Lett. 43, 1494 (1979).


H.J. Monkhorst, J.D. Pack. Special points for Brillouinzone integrations. Phys. Rev. B 13, 5188 (1976).


R. Rafaele, and D. Vanderbilt. Theory of polarization: A modern approach. In: Physics of Ferroelectrics. Topics in Applied Physics 105, 31 (2007).

F.D. Murnaghan. The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).


M.F.M. Taib, M.K. Yaakob, F.W. Badrudin, M.S.A. Rasiman, T.I.T. Kudin, O.H. Hassan, M.Z.A. Yahya. First-principles comparative study of the electronic and optical properties of tetragonal (P4mm) ATiO3 (A = Pb, Sn, Ge). Integrated Ferroelectrics 155, 23 (2014).


J.H. Weiner. Statistical Mechanics of Elasticity. (Courier Corporation, 2012) [ISBN: 0-486-42260-7].

S. Piskunov, E. Heifets, R. Ieglitis, G. Borstel. Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3

perovskites: an ab initio HF/DFT study. Comput. Mater. Sci. 29, 165 (2004).


R.W. Hill. The elastic behavior of a crystalline aggregate. Proc. Phys. Soc. 65, 349 (1952).


W. Voigt. Lehrbuch der Kristallphysik. (Vieweg + Teubner, 1966) [ISBN: 978-3-663-15884-4].


A. Reuss. Berbcksichtigung der elastischen formanderung in der plastizitatstheorie. J. Appl. Math. Mech. 10, 266 (1930).


H. Fua, D. Lib, F. Penga, T. Gaoc, X. Cheng. Ab initio calculations of elastic constants and thermodynamic properties of NiAl under high pressures. Comput. Mater. Sci. 44, 774 (2008).


S.F. Pugh. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Phil. Magaz. J. of Sci. 45, 823 (1954).


S.I. Ranganathan, M. Ostoja-Starzewski. Universal elastic anisotropy index. Phys. Rev. Lett. 101, 055504 (2008). https://doi.org/10.1103/PhysRevLett.101.055504

R. Gaillac, P. Pullumbi, F. Coudert. ELATE: an open-source online application for analysis and visualization of elastic tensors. Phys.: Condens. Matter 28, 275201 (2016). https://doi.org/10.1088/0953-8984/28/27/275201

P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson. Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. J. Appl. Phys. 84, 4891 (1998). https://doi.org/10.1063/1.368733

O.L. Anderson. A simplifi ed method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909 (1963). https://doi.org/10.1016/0022-3697(63)90067-2

S. Edward, O.L. Anderson, N. Soga. Elastic Constants and Their Measurement (McGraw-Hill, 1973) [ISBN: 978-0-07-055603-4].

J. Callaway. Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046 (1959). https://doi.org/10.1103/PhysRev.113.1046

N.H. Hussin, M.F.M. Taib, N.A. Johari, F.W. Badrudin, O.H. Hassan, M.Z.A. Yahya. Establishment of structural and elastic properties of titanate compounds based on Pb, Sn and Ge by fi rst-principles calculation. Appl. Mech. Mater. 510, 57 (2014). https://doi.org/10.4028/www.scientific.net/AMM.510.57




How to Cite

Shiferaw, G., & Menberu, M. (2021). A First-Principles Study of Structure, Elastic and Electronic Properties of GeTiO3 as Environmentally Innocuous Ferroelectric Perovskites. Ukrainian Journal of Physics, 66(6), 539. https://doi.org/10.15407/ujpe66.6.539



Structure of materials