Influence of Ag2Te on Transport Properties of (AgS-bTe2)0.9(PbTe)0.1


  • S.S. Ragimov Baku State University, Institute for Physical Problems, Institute of Physics, National Academy of Sciences of Azerbaijan
  • M.A. Musayev Azerbaijan State Oil and Industry University
  • N.N. Hashimova Azerbaijan State Oil and Industry University



thermoelectric material, endothermic effect, electrical conductivity, Seebeck coefficient, Hall coefficient


The transport properties of (AgSbTe2)0.9(PbTe)0.1, namely, the electrical conductivity and the Seebeck (S) and Hall (RH) coefficients, are studied in the temperature interval 80–560 K. An endothermic peak at 410 K is found by the differential scanning calorimetry (DSC). Sharp changes in the temperature dependences of the electrical conductivity and thermoelectric power in the region near 410 K are observed. The temperature dependence of Hall coefficient passes through maximum at ∼200 K and has negative sign. It is shown that, these peculiarities are due to the presence of the Ag2Te phase. The thermoelectric Z-factor has the maximum value of 2.7 × 10−3 K−1 at 400 K.


L.I. Anatychuk. Physics of Thermoelectricity (Bukrek, 2003), Vol. II (in Ukrainian) [ISBN 966-7854-55-8].

M.G. Kanatzidis. Nanostructured thermoelectrics: The new paradigm? Chem. Mater. 22, 648 (2010).

J. Sootsman, D.Y. Chung, M.G. Kanatzidis. New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. 48, 8616 (2009).

K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, M.G. Kanatzidis. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 303, 818 (2004).

S. Perlt, T. Hoche, J. Dadda, E. Muller, P.B. Pereira, R. Hermann, M. Sarahan, E. Pippel, R. Brydson. Microstructure analyses and thermoelectric properties of Ag1−xPb18Sb1+y Te20. J. Solid State Chem. 193, 58 (2012).

L.J. Wu, J.C. Zheng, J. Zhou, Q. Li, J.H. Yang, Y.M. Zhu. Nanostructures and defects in thermoelectric AgPb18SbTe20 single crystal. J. Appl. Phys. 105, 094317 (2009).

A.V. Dmitriev, I.P. Zvyagin. Current trends in the physics of thermoelectric materials. Physics-Uspekhi 53 (8), 789 (2010).

Y. Xiao, L-D. Zhao. Charge and phonon transport in PbTebased thermoelectric materials. npj Quantum Materials 55, 1 (2018).

S.A. Aliev, S.S. Ragimov. Thermoelectric Properties of Samples of the Ag-Sb-Te System. Inorganic Materials 28, 239 (1992).

S.S. Ragimov, A.E. Babayeva, A.I. Aliyeva. On the thermal conductivity of AgSbTe2 and Ag 0.82Sb1.18Te2.18. Low

Temperature Physics 44 (11), 1195 (2018).

H. Wang, J.F. Li, M. Zou, T. Sui. Synthesis and transport property of AgSbTe2 as a promising thermoelectric compound. Appl. Phys. Lett. 93, 202106 (2008).

S.S. Ragimov, S.A. Aliev. a → B phase transition of Ag2 in the AgSbTe2 alloy of the Ag-Sb-Te System. Inorg. Mater. 43 (11), 1184 (2007).

B. Du, H. Li, J. Xu, X. Tang, C. Uher. Enhanced figureof-merit in Se-doped p-type AgSbTe2 thermoelectric compound. Chem. Mater. 22, 5521 (2010).

S.A. Aliev, Z.F. Agaev, E.I. Zulfigarov. Charge transport in silver chalcogenides in the region of phase transition. Semiconductors 41, 1027 (2007).

V. Jovovic, J.P. Heremans. Measurements of the energy band gap and valence band structure of AgSbTe2. Phys. Rev. B 77, 245204 (2008).




How to Cite

Ragimov, S., Musayev, M., & Hashimova, N. (2021). Influence of Ag2Te on Transport Properties of (AgS-bTe2)0.9(PbTe)0.1. Ukrainian Journal of Physics, 66(11), 983.



Semiconductors and dielectrics