Thermodynamic Parameters of the Viscous Flow in the Aqueous Solutions of Polyols

  • O. P. Rudenko V.G. Korolenko National Pedagogical University of Poltava
  • O. V. Saienko V.G. Korolenko National Pedagogical University of Poltava
  • R. O. Saienko V.G. Korolenko National Pedagogical University of Poltava
  • O. S. Svechnikova Taras Shevchenko National University of Kyiv
Keywords: viscosity, polyols, aqueous solutions, isokinetic temperature

Abstract

Data experimentally obtained for the kinematic viscosity are used to calculate the thermodynamic characteristics of viscous flows in some polyols and their aqueous solutions. The solutions of glycerol, erythritol, xylitol, adonite, sorbitol, mannitol, and dulcite are studied, as well as the melts of erythritol, xylitol, and sorbitol. The entropy, enthalpy, and free energy of the viscous flow are calculated in the framework of the theory of reaction rate constants. A linear dependence between the true entropy and the enthalpy of the viscous flow in the researched systems is found, which allowed us to determine the isokinetic temperature, calculate the transmission coefficient, draw a conclusion about the mechanisms of bond formation in the reaction centers of active complexes, and estimate the vibration energy of those bonds.

References

S. Ghosh, M.L. Sudha. A review on polyols: New frontiers for health-based bakery products. Int. J. Food Sci. Nut. 63, 372 (2012). https://doi.org/10.3109/09637486.2011.627846

J.O. Metzger. Production of liquid hydrocarbons from biomass. Angew. Chem. Int. Ed. Engl. 45, 696 (2006). https://doi.org/10.1002/anie.200502895

N.I. Gumenyuk, V.Yu. Lishnevskaya. Influence of rheosorbilact on rheological blood properties in patients with coronary artery disease and chronic obstructive bronchitis. Ukr. Pulmonol. Zh. N 3, 38 (2003) (in Russian).

V.L. Novak, I.V. Vovk, B.O. Kondrats'kyi, S.V. Prymak, M.P. Dzisiv, O.P. Novak, R.P. Dzis, L.G. Doroshenko, Ye.P. Karpovych, V.Ye. Chaban, I.M. Parobets'ka, V.V. Ivasyk. The effect of intravenous infusions of the new domestic "Rheosorbilact" medication on the blood urea value of patients following operations on the esophagus and stomach. Bukovyn. Med. Visn. 10, No. 2, 49 (2006) (in Ukrainian).

V. Pogorelov, L. Bulavin, I. Doroshenko, O. Fesjun, O. Veretennikov. The structure of liquid alcohols and the temperature dependence of vibrational bandwidth. J. Mol. Struct. 708, 61 (2004). https://doi.org/10.1016/j.molstruc.2004.03.003

L. Bulavin, O. Belous, O. Svechnikova. Anomalous ultrasound attenuation near the critical point of n-pentanol-nitromethane solution stratification. Ukr. J. Phys. 61, 375 (2019). https://doi.org/10.15407/ujpe61.05.0375

P. Golub, I. Doroshenko, V. Pogorelov. Quantum-chemical modeling of energy parameters and vibrational spectra of chain and cyclic clusters of monohydric alcohols. Phys. Lett. A 378, 1937 (2014). https://doi.org/10.1016/j.physleta.2014.04.032

V. Pogorelov, A. Yevglevsky, I. Doroshenko, L. Berezovchuk, Yu. Zhovtobryuch. Nanoscale molecular clusters and vibrational relaxation in simple alcohols. Superlatt. Microstruct. 44, 571 (2008). https://doi.org/10.1016/j.spmi.2008.01.014

J. Frenkel. Kinetic Theory of Liquids (Dover, 1955).

S. Gleston, K.J. Laider, H. Eyring. The Theory of Absolute Rate Processes (McGraw-Hill, 1941).

M.I. Shakhparonov. Mechanisms of Fast Processes in Liquids (Vysshaya Shkola, 1985) (in Russian).

N.P. Malomuzh, V.P. Oleynik. Nature of the kinematic shear viscosity of water. J. Struct. Chem. 49, 1055 (2008). https://doi.org/10.1007/s10947-008-0178-1

M.P. Malomuzh, O.P. Rudenko, A.M. Khlopov, L.M. Yagupol's'kyi. Peculiarities of the temperature dependence of kinematic shear viscosity of fluorine derivatives of benzene. Ukr. J. Phys. 55, 283 (2010).

R.O. Saienko, O.P. Rudenko, A.M. Getalo, O.V. Saienko, S.W. Stepanenko. Device for measuring the viscosity of liquid substanced. Patent of Ukraine No. 94735, MPK G01N 22, U201406993 (2014) (in Ukrainian).

L.A. Bulavin, A.M. Getalo, O.P. Rudenko, O.V. Khorolskyi. Influence of fluorination on the physical properties of normal aliphatic alcohols. Ukr. J. Phys. 60, 428 (2015). https://doi.org/10.15407/ujpe60.05.0428

V.I. Lebed, E.N. Glazkova. Physico-chemical properties of the system formic acid-water-1,4-dyoxan. Visn. Kharkiv. Nat. Univ. Ser. Khim. No. 669, 188 (2005) (in Russian).

I.T. Gronovskii, Yu.P. Nazarenko, E.F. Nekryach. Quick Reference on Chemistry (Naukova Dumka, 1974) (in Russian).

Published
2020-08-26
How to Cite
Rudenko, O., Saienko, O., Saienko, R., & Svechnikova, O. (2020). Thermodynamic Parameters of the Viscous Flow in the Aqueous Solutions of Polyols. Ukrainian Journal of Physics, 65(9), 810. https://doi.org/10.15407/ujpe65.9.810
Section
Physics of liquids and liquid systems, biophysics and medical physics