Slow and Fast Lights in Metal/Dielectric Composite of Cylindrical Nanoinclusions in Passive and Active Linear Dielectric Host Matrices


  • Y.A. Abbo Wollega University, Department of Physics



slow light, fast light, nanocomposite, group velocity


This paper presents theoretical discussions and computational numerical results obtained from the study of extreme values of the speed of light in metal/dielectric composite, where the cylindrical nanoinclusions are uniformly distributed in the linear dielectric host matrix. The results testify that, within our approach, at the region of anomalous dispersion, light can travel with a group velocity greater than the speed of light in vacuum. In a composite with passive host matrix, the light pulse is absorbed within a very small distance. The problem of absorption can be reduced considerably by using an active host matrix.


R.W. Boyd. Slow and fast light: Fundamentals and applications. J. Modern Opt. 56, 1908 (2009).

L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi. Light speed reduction to 17 meters per second in ultra cold atomic gas. Nature 397, 594 (1999).

M.M. Kash, V.A. Sautenkov, A.S. Zibrov, L. Hollberg, E.S. Fry, M.O. Scully. Ultraslow group velocity and enhanced nonlinear optical eff ects in a coherently driven hot atomic gas Phys. Rev. Lett. 82, 5229 (1999).

A.M. Akulshin, S. Barreiro, A. Lezaman. Steep anomalous in coherently prepared Rb vapor. Phys. Rev. Lett. 83, 4277 (1999).

S.k. Kim, H.S. Moon, K.Kim, J.B.Kim. Observation of electromagnetically induced absorption in open systems regardless of angular momentum. Phys. Rev. A 68, 063813 (2003).

L.J. Wang, A. Kuzmich, A. Dogatiu. Gain assisted superluminal light propagation. Nature 406, 277 (2000).

A.M. Steinberg, P.G. Kwait, R.Y. Chiao. Measurement of the single-photon tunneling time. Phys. Rev. Lett. 71, 708 (1993).

M.S. Bigelow, N.N. Lepeshkin, R.W. Boyd. Ultra-slow and superluminal light propagation in solids at room temperature. J. Phys.: Condensed Matter. 16, 46 (2004).

V.N Mal'nev, S. Shewamare. Slow and fast light in metal/dielectric composite with passive and active host matrices. Physica B: Condensed Matter. 426, 52 (2013).

K.H. Kim, S.H. Choe. Slow and stooped light in active gain composite materials of metal nanoparticles: Ultralarge group index-bandwidth product predicted. Annalen der Physik 529, 8 (2017).

J.D. Jackson. Classical Electrodynamics, (Wiley, 1999) [ISBN: 0-471-30932].

Y.A. Abbo, V.N. Mal'nev, A.A. Ismail. Local fi eld enhancement at the core of cylindrical nanoinclusions embedded in a linear dielectric host matrix. Condens. Matter Phys. 19 (3), 33401 (2016).

M.M. Quinten.Optical Properties of Nanoparticle Systems, (Wiley-VCH, 2011) [ISBN-13: 978-3527410439].

S. Giordano. Eff ective medium theory for dispersions of dielectric ellipsoids. J. Electrostatics 58, 59 (2003).

R.D. Guenther. Modern Physics, (Wiley, 1990) [ISBN: 0.471-60538-7].

S. Shewamare, V.N. Mal'nev. Two optical bistability domains in composites of metal nanoparticles with nonlinear dielectric core. Phys. B: Condensed Matter. 407, 4837 (2012).

C.G.B. Garrett, D.E. MaCumber. Propagation of a Gaussian light pulse through an anomalous dispersion medium. Phys. Rev. A 1, 305 (1970).

S. Chu, S. Wong. Linear pulse propagation in an absorbing medium. Phys. Rev. Lett. 48, 738 (1982).




How to Cite

Abbo, Y. (2021). Slow and Fast Lights in Metal/Dielectric Composite of Cylindrical Nanoinclusions in Passive and Active Linear Dielectric Host Matrices. Ukrainian Journal of Physics, 66(4), 281.



Optics, atoms and molecules