Quantum Chemical Modeling of the Complexes of Squaraine Dyes with Carbon Nanoparticles: Graphene, Nanotube, Fullerene

  • O. Pavlenko Taras Shevchenko National University of Kyiv
  • O. Dmytrenko Taras Shevchenko National University of Kyiv
  • M. Kulish Taras Shevchenko National University of Kyiv
  • A. Gaponov Taras Shevchenko National University of Kyiv
  • N. Obernikhina A.A. Bogomolets National Medical University
  • O. Kachkovsky V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, Nat. Acad. of Sci. of Ukraine
  • O. Ilchenko Technical University of Denmark
  • L. Bulavin Taras Shevchenko National University of Kyiv
Keywords: dyes, carbon nanoparticles, electronic structure

Abstract

The geometry and electronic structure of the complexes of dyes containing various numbers of electron-donor oxygen atoms and carbon nanostructures with various dimensions (fullerene C60, carbon nanotube, graphene) have been studied. It is shown that the charge transfer from the dyes to the carbon nanostructures leads to changes in the geometry of carbon nanostructures and the dye chromophores, as well as in the electronic structure of the whole complexes.

References

R.A. Ristinen, J.J. Kraushaar. Energy and the Environment (Wiley, 2006).

S. Khan, A.A. Edathil, F. Banat. Sustainable synthesis of graphenebased adsorbent using date syrup. Sci. Rep. 9, 18106 (2019). https://doi.org/10.1038/s41598-019-54597-x

J.K. Rath. Low temperature polycrystalline silicon: A review on deposition, physical properties and solar cell applications. Sol. Energ. Mater. Sol. Cells 76, 431 (2003). https://doi.org/10.1016/S0927-0248(02)00258-1

X. Liu, P.R. Coxon, M. Peters, B. Hoex, J.M. Cole, D.J. Fray. Black silicon: Fabrication methods, properties and solar energy applications. Energ. Environ. Sci. 7, 3223 (2014). https://doi.org/10.1039/C4EE01152J

W.H. Bloss, F. Pfisterer, M. Schubert, T.Walter. Thin-film solar cells. Prog. Photovoltaics 3, 3 (1995). https://doi.org/10.1002/pip.4670030102

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner. Photovoltaic technology: The case for thin-film solar cells. Science 285, 692 (1999). https://doi.org/10.1126/science.285.5428.692

K.L. Chopra, P.D. Paulson, V. Dutta. Thin-film solar cells: An overview. Prog. Photovoltaics 12, 69 (2004). https://doi.org/10.1002/pip.541

M.K. Nazeeruddin, P. Pechy, T. Renouard, S.M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G.B. Deacon, C.A. Bignozzi, M. Gr¨atzel. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 123, 1613 (2001). https://doi.org/10.1021/ja003299u

H. Wang, Y.H. Hu. Graphene as a counter electrode material for dye-sensitized solar cells. Energ. Environ. Sci. 5, 8182 (2012). https://doi.org/10.1039/c2ee21905k

J.G. Nam, Y.J. Park, B.S. Kim, J.S. Lee. Enhancement of the efficiency of dyesensitized solar cell by utilizing carbon nanotube counter electrode. Scripta Mater. 62, 148A150 (2010). https://doi.org/10.1016/j.scriptamat.2009.10.008

T.L. Makarova. Electrical and optical properties of monomer and polymerized fullerenes. Fiz. Tekh. Poluprovodn. 35, 257 (2001) (in Russian). https://doi.org/10.1134/1.1356145

A.Yu. Belik, A.Yu. Rybkin, I.I. Voronov, N.S. Goryachev, D. Volyniuk, J.V. Grazulevicius, P.A. Troshin, A.I. Kotelnikov. Non-covalent complexes of polycationic fullerene C60 derivative with xanthene dyes - Spectral and photochemical properties in water and in liposomes. Dyes Pigm. 139, 65 (2017). https://doi.org/10.1016/j.dyepig.2016.11.025

G.Chen,D.Yokoyama,H. Sasabe, Z.Hong,Y.Yang, J.Kido. Optical and electrical properties of a squaraine dye in photovoltaic cells. Appl. Phys. Lett. 101, 083904 (2012). https://doi.org/10.1063/1.4747623

M.A.M. Al-Alwani, A.B. Mohamad, N.A. Ludin, Abd. A.H. Kadhum, K. Sopian. Dye-sensitised solar cells: Development, structure, operation principles, electron kinetics, characterisation, synthesis materials and natural photosensitisers. Ren. Sust. En. Rev. 650, 183 (2016). https://doi.org/10.1016/j.rser.2016.06.045

O.A. Kyzyma, M.V. Korobov, M.V. Avdeev, V.M. Garamus, V.I. Petrenko, V.L. Aksenov, L.A. Bulavin. Solvatochromism and fullerene cluster formation in C60/N-methyl-2-pyrrolidone. Fulleren. Nanotub. Carbon Nanostrust. 18, 458 (2010). https://doi.org/10.1080/1536383X.2010.487778

O.A. Kyzyma, T.O. Kyrey, M.V. Avdeev, M.V. Korobov, L.A. Bulavin, V.L. Aksenov. Non-reversible solvatochromism in N-methyl-2-pyrrolidone/toluene mixed solutions of fullerene C60. Chem. Phys. Lett. 556, 178 (2013). https://doi.org/10.1016/j.cplett.2012.11.040

P.A. Troshin, R.N. Lubovskaya. Organic chemistry of fullerenes: the major reactions, types of fullerene derivatives and prospectrs for their practical use. Rus. Chem. Rev. 77, 305 (2008). https://doi.org/10.1070/RC2008v077n04ABEH003770

J.L. Bricks, A.D. Kachkovskii, Y.L. Slominskii, A.O. Gerasov, S.V. Popov. Molecular design of near infrared polymethine dyes: A review. Dyes.Pigm. 121, 238 (2015). https://doi.org/10.1016/j.dyepig.2015.05.016

G. Patonay, J. Salon, J. Sowell, L. Strekowski. Noncovalent labeling of biomolecules with red and near-infrared dyes. Molecules 9, 40e9 (2004). https://doi.org/10.3390/90300040

M. J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, Jr., J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B.Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople. Gaussian 03, Revision A.1 (Gaussian Inc., 2003).

O.L. Pavlenko, V.A. Brusentsov, M.P. Kulish, O.P. Dmytrenko, V.A. Sendiuk, P.Yu. Kobzar, V.V. Strelchuk, Yu.L. Slominskyi, V.V. Kurdiukov, O.D. Kachkovskyi, Ya.U. Prostota. Spectral and quantum chemical study of interaction between fullerenes and squaraine dyes. Nanosyst. Nanomat. Nanotekhnol. 13, 1 (2018) (in Ukrainian).

A.M. Zarytska, V.A. Brusentsov, O.L. Pavlenko. M.P. Kulish, O.P. Dmytrenko, O.D. Kachkovskyi. Electronic structure of molecular system fullerene-C60 with indopentacyanine dye with stack and covalent interaction. Nanosyst. Nanomat. Nanotekhnol. 15, 507 (2017) (in Ukrainian). https://doi.org/10.15407/nnn.15.03.0507

Published
2020-08-26
How to Cite
Pavlenko, O., Dmytrenko, O., Kulish, M., Gaponov, A., Obernikhina, N., Kachkovsky, O., Ilchenko, O., & Bulavin, L. (2020). Quantum Chemical Modeling of the Complexes of Squaraine Dyes with Carbon Nanoparticles: Graphene, Nanotube, Fullerene. Ukrainian Journal of Physics, 65(9), 741. https://doi.org/10.15407/ujpe65.9.741
Section
Optics, atoms and molecules

Most read articles by the same author(s)