Effect of Surface Nano-Texturing on Wetting Properties: Molecular Dynamics Study

  • M. Aleksandrovych Universit´e de Lorraine, CNRS, LEMTA, Faculty of Physics, Taras Shevchenko National University of Kyiv
  • G. Castanet Universit´e de Lorraine, CNRS, LEMTA
  • S. Burian Faculty of Physics, Taras Shevchenko National University of Kyiv
  • F. Lemoine Universit´e de Lorraine, CNRS, LEMTA
  • D. Lacroix Universit´e de Lorraine, CNRS, LEMTA
  • M. Isaiev Universit´e de Lorraine, CNRS, LEMTA
Keywords: solid/fluid interface, wetting, nanostructured surface, molecular dynamics


Molecular dynamics simulations describing the equilibrium shape of a nanodroplet located on the solid substrate are presented for the cases of a “cylindrical water droplet” on silicon substrates. Several examples of the structuration of the solid substrate surface are simulated, i.e.: atomistic flat substrate and substrates with ordered nanopillars and nanopores. The adhesives forces between molecules of the substrate and the fluid are modified to change the wettability. Three wetting configurations are considered in this work for the smooth surface: (i) hydrophilic (0 = 30∘), (ii) hydrophobic (0 = 136∘), and (iii) an intermediate regime (0 = 80∘). Further, the dependence of the wetting angle as a function of the surface state is studied in details for the above-mentioned configurations.


S.S. Latthe, R.S. Sutar, V.S. Kodag, A.K. Bhosale, A.M. Kumar, K.K. Sadasivuni, R. Xing, Sh. Liu. Self-cleaning superhydrophobic coatings: Potential industrial applications. Progress in Organic Coatings. 128, 52 (2019). https://doi.org/10.1016/j.porgcoat.2018.12.008

E.A. Chinnov, E.N. Shatskiy, V.V. Semionov. Effect of thermocapillary instability on liquid film breakdown. Intern. J. Heat and Mass Transfer 145, 118692 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.118692

N. Wu, L. Zeng, T. Fu, Z. Wang, C. Lu. Molecular dynamics study of rapid boiling of thin liquid water film on smooth copper surface under different wettability conditions. Intern. J. Heat and Mass Transfer 147, 118905 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2019.118905

R. Liu, Z. Liu. Study of boiling heat transfer on concave hemispherical nanostructure surface with MD simulation. Intern. J. Heat and Mass Transfer 143, 118534 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.118534

R. Diaz, Z. Guo. Molecular dynamics study of wettability and pitch effects on maximum critical heat flux in evaporation and pool boiling heat transfer. Numerical Heat Transfer; Part A: Applications. 72, 891 (2017). https://doi.org/10.1080/10407782.2017.1412710

X. Yin, C. Hu, M. Bai, J. Lv. Molecular dynamic simulation of rapid boiling of nanofluids on different wetting surfaces with depositional nanoparticles. Intern. J. Multiphase Flow 115, 9 (2019). https://doi.org/10.1016/j.ijmultiphaseflow.2019.03.022

V.B. Warshavsky, T.S. Podguzova, D.V. Tatyanenko, A.K. Shchekin. Vapor nucleation on a wettable nanoparticle carrying a non-central discrete electric charge. J. Chem. Phys. 138, 194708 (2013). https://doi.org/10.1063/1.4804655

M. Barisik, A. Beskok. Wetting characterisation of silicon (1,0,0) surface. Molecular Simulation. 39, 700 (2015). https://doi.org/10.1080/08927022.2012.758854

M. Isaiev, S. Burian, L. Bulavin, M. Gradeck, F. Lemoine, K. Termentzidis. Efficient tuning of potential parameters for liquid-solid interactions. Molecular Simulation 42, 910 (2016) https://doi.org/10.1080/08927022.2015.1105372

H.G. Ozcelik, A.C. Ozdemir, B. Kim, M. Barisik. Wetting of single crystalline and amorphous silicon surfaces: effective range of intermolecular forces for wetting. Molecular Simulation 46, 224 (2020). https://doi.org/10.1080/08927022.2019.1690145

S. Burian, M. Isaiev, K. Termentzidis, V. Sysoev, L. Bulavin. Size dependence of the surface tension of a free surface of an isotropic fluid. Phys. Rev. E 95, 062801 (2017). https://doi.org/10.1103/PhysRevE.95.062801

S.S. Rekhviashvili, E.V. Kishtikova. On the size dependence of a contact angle. Protection of Metals and Phys. Chem. Surfaces 48, 402 (2012). https://doi.org/10.1134/S2070205112040156

S. Rekhviashvili, A. Sokurov. Modeling of a sessile droplet with the curvature dependence of surface tension. Turkish J. Phys. 42, 699 (2018). https://doi.org/10.3906/fiz-1807-26

M. Isaiev, S. Burian, L. Bulavin, W. Chaze, M. Gradeck, G. Castanet, S. Merabia, P. Keblinski, and K. Termentzidis. Gibbs adsorption impact on a nanodroplet shape: Modification of Young-Laplace equation. J. Phys. Chem. B 122, 3176 (2018). https://doi.org/10.1021/acs.jpcb.7b12358

D.V. Tatyanenko, A.K. Shchekin. Thermodynamic analysis of adsorption and line-tension contributions to contact angles of small sessile droplets. Colloid J. 81, 455 (2019). https://doi.org/10.1134/S1061933X19030153

T.A. Otitoju, A.L. Ahmad, B.S. Ooi. Superhydrophilic (superwetting) surfaces: A review on fabrication and application. J. Industrial and Engineering Chemistry 47, 19 (2017). https://doi.org/10.1016/j.jiec.2016.12.016

M. Ma, R. M. Hill. Superhydrophobic surfaces. Current Opinion in Colloid and Interface Science 11, 193 (2016). https://doi.org/10.1016/j.cocis.2006.06.002

J. Wloch, A.P. Terzyk, P.A. Gauden, R. Wesolowski, P. Kowalczyk. Water nanodroplet on a graphene surface - a new old system. J. Phys.: Cond. Matter. 28, 495002 (2016). https://doi.org/10.1088/0953-8984/28/49/495002

L. Chen, Sh.-Y.Wang, X. Xiang, W.-Q. Tao. Mechanism of surface nanostructure changing wettability: A molecular-dynamics simulation. Comput. Mater. Sci. 171, 1092233 (2020). https://doi.org/10.1016/j.commatsci.2019.109223

J. Wu, I. Snustad, A. Ervik, A. Brunsvold, J. He, Zh. Zhang. CO2 wetting on pillar-nanostructured substrates. Nanotechnology 1, 1 (2020). https://doi.org/10.1088/1361-6528/ab7c49

S. Khan, J.K. Singh. Wetting transition of nanodroplets of water on textured surfaces: a molecular dynamics study. Molecular Simulation 40, 458 (2014). https://doi.org/10.1080/08927022.2013.819578

M. Isaiev, G. Castanet, M. Gradeck, F. Lemoine, K. Termentzidis. Microscopic study of solid/fluid interface with molecular dynamics. Modern Problems of the Physics of Liquid Systems, Springer Proceedings in Physics 223, 73 (2019). https://doi.org/10.1007/978-3-030-21755-6_3

K.R. Hadley, C. McCabe. Coarse-grained molecular models of water: A review. Molecular Simulation 38, 671 (2012). https://doi.org/10.1080/08927022.2012.671942

M. Orsi, J.W. Essex. The ELBA force field for coarse-grain modeling of lipid membranes. PLoS ONE 6, e28637 (2011). https://doi.org/10.1371/journal.pone.0028637

W. Ding, M. Palaiokostas, M. Orsi. Stress testing the ELBA water model. Molecular Simulation 42, 337 (2016). https://doi.org/10.1080/08927022.2015.1047367

F.H. Stillinger, T.A. Weber. Computer simulation of local order in con- densed phases of silicon. Phys. Rev. B 31, 5262 (1985). https://doi.org/10.1103/PhysRevB.31.5262

S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117, 1 (1995). https://doi.org/10.1006/jcph.1995.1039

P. Bryk, E. Korczeniewski, G.S. Szyma'nski, P. Kowalczyk, K. Terpilowski, A. Terzyk. What is the value of water contact angle on silicon? Materials 38, 13 (2020). https://doi.org/10.3390/ma13071554

How to Cite
Aleksandrovych, M., Castanet, G., Burian, S., Lemoine, F., Lacroix, D., & Isaiev, M. (2020). Effect of Surface Nano-Texturing on Wetting Properties: Molecular Dynamics Study. Ukrainian Journal of Physics, 65(9), 817. https://doi.org/10.15407/ujpe65.9.817
Surface physics