Investigations of the Kinetics of Cluster Growth in Fullerene C60 Solutions

  • T. V. Tropin Joint Institute for Nuclear Research
  • N. Jargalan Institute of Physics and Technology, Mongolian Academy of Sciences https://orcid.org/0000-0001-8230-3993
  • M. V. Avdeev Joint Institute for Nuclear Research
  • V. L. Aksenov Joint Institute for Nuclear Research
Keywords: fullerene, fullerene solutions, aggregation, cluster growth, kinetics, dynamic light scattering

Abstract

Fullerenes tend to form clusters in different solutions. In this work, a brief survey and some results in the field of investigations of the structure and kinetics of clusters growing in C60 solutions are presented. The general character of this phenomenon for fullerenes is emphasized, and the considerations of mechanisms responsible for the formation and growth of clusters are discussed. We distinguish different types of fullerene solvents by the aggregation mechanism. The kinetics of cluster growth measured via the dynamic light scattering is presented. The complicated structure of clusters in different solutions is briefly discussed.

References

R.S. Ruoff, S.T. Doris, R. Malhotra, D.C. Lorents. Solubility of fullerene (C60) in a variety of solvents. J. Phys. Chem. 97, 3379 (1993). https://doi.org/10.1021/j100115a049

N.O. Mchedlov-Petrossyan. Fullerenes in molecular liquids. Solutions in "good" solvents: Another view. J. Mol. Liq. 161, 12 (2011). https://doi.org/10.1016/j.molliq.2011.04.001

N.O. Mchedlov-Petrossyan. Fullerenes in liquid media: An unsettling intrusion into the solution chemistry. Chem. Rev. 113, 5149 (2013). https://doi.org/10.1021/cr3005026

V.N. Bezmel'nitsyn, A.V. Eletskii, M.V. Okun'. Fullerenes in solutions. Uspekhi Fiz. Nauk. 168, 1195 (1998). https://doi.org/10.3367/UFNr.0168.199811b.1195

M.V. Korobov, A.L. Smith. Solubility of fullerenes. In Fullerenes Chemistry, Physics and Technology. Edited by K.M. Kadish, R.S. Ruoff, (Wiley, 2000), Chap. 2.

M.V. Avdeev, V.L. Aksenov, T.V. Tropin. Models of cluster formation in solutions of fullerenes. Russ. J. Phys. Chem. A. 84, 1273 (2010). https://doi.org/10.1134/S0036024410080017

R.S. Ruoff, R. Malhotra, D.L. Huestis, D.S. Tse, D.C. Lorents. Anomalous solubility behaviour of C60. Nature 362, 140 (1993). https://doi.org/10.1038/362140a0

A. Mrzel, A. Mertelj, A. Omerzu, M. Copic, D. Mihailovic. Investigation of encapsulation and solvatochromism of fullerenes in binary solvent mixtures. J. Phys. Chem. B 103, 11256 (1999). https://doi.org/10.1021/jp992637e

Y.-P. Sun, C.E. Bunker. C70 in solvent mixtures. Nature 365, 398 (1993). https://doi.org/10.1038/365398a0

Q. Ying, J. Marecek, B. Chu. Solution behavior of buckminsterfullerene (C60) in benzene. J. Chem. Phys. 101, 2665 (1994). https://doi.org/10.1063/1.467646

Q. Ying, J. Marecek, B. Chu. Slow aggregation of buckminsterfullerene (C60) in benzene solution. Chem. Phys. Lett. 219, 214 (1994). https://doi.org/10.1016/0009-2614(94)87047-0

R.V. Honeychuck, T.W. Cruger, J. Milliken. Molecular weight of C60 in solution by vapor pressure osmometry. J. Am. Chem. Soc. 115, 3034 (1993). https://doi.org/10.1021/ja00060a085

N.O. Mchedlov-Petrossyan, V.K. Klochkov, G.V. Andrievsky. Colloidal dispersions of fullerene C60 in water: some properties and regularities of coagulation by electrolytes. J. Chem. Soc. Faraday Trans. 93, 4343 (1997). https://doi.org/10.1039/a705494g

N.O. Mchedlov-Petrossyan, N.N. Kamneva, Y.T.M. Al-Shuuchi, A.I. Marynin, S.V. Shekhovtsov. The peculiar behavior of fullerene C60 in mixtures of "good" and polar solvents: Colloidal particles in the toluene-methanol mixtures and some other systems. Colloids Surf. A. Physicochem. Eng. Asp. 509, 631 (2016). https://doi.org/10.1016/j.colsurfa.2016.09.045

R. Dattani, K.F. Gibson, S. Few, A.J. Borg, P.A. DiMaggio, J. Nelson, S.G. Kazarian, J.T. Cabral. Fullerene oxidation and clustering in solution induced by light. J. Colloid Interface Sci. 446, 24 (2015). https://doi.org/10.1016/j.jcis.2015.01.005

T. Tomiyama, S. Uchiyama, H. Shinohara. Solubility and partial specific volumes of C60 and C70. Chem. Phys. Lett. 264, 143 (1997). https://doi.org/10.1016/S0009-2614(96)01290-0

I.I. Adamenko, L.A. Bulavin, K.O. Moroz, Y.I. Prylutskyy, P. Scharff. Equation of state for C60 toluene solution. J. Mol. Liq. 105, 149 (2003). https://doi.org/10.1016/S0167-7322(03)00045-X

L.A. Bulavin, I.I. Adamenko, V.M. Yashchuk, T.Y. Ogul'chansky, Y.I. Prylutskyy, S.S. Durov, P. Scharff. Self-organization C60 nanoparticles in toluene solution. J. Mol. Liq. 93, 187 (2001). https://doi.org/10.1016/S0167-7322(01)00228-8

U. Makhmanov, O. Ismailova, A. Kokhkharov, E. Zakhidov, S. Bakhramov. Features of self-aggregation of C60 molecules in toluene prepared by different methods. Phys. Lett. A. 380, 2081 (2016). https://doi.org/10.1016/j.physleta.2016.04.030

R.H. Guo, C.C. Hua, P.C. Lin, T.Y. Wang, S.A. Chen. Mesoscale aggregation properties of C60 in toluene and chlorobenzene. Soft Matter 12, 6300 (2016). https://doi.org/10.1039/C6SM00602G

M.V. Avdeev, T.V. Tropin, I.A. Bodnarchuk, S.P. Yaradaikin, L. Rosta, V.L. Aksenov, L.A. Bulavin. On structural features of fullerene C60 dissolved in carbon disulfide: complementary study by small-angle neutron scattering and molecular dynamic simulations. J. Chem. Phys. 132, 164515 (2010). https://doi.org/10.1063/1.3415500

K.A. Affholter, S.J. Henderson, G.D.Wignall, G.J. Bunick, R.E. Haufler, R.N. Compton. Structural characterization of C60 and C70 fullerenes by small-angle neutron scattering. J. Chem. Phys. 99, 9224 (1993). https://doi.org/10.1063/1.465538

A.D. Bokare, A. Patnaik. Microscopic diffusion model applied to C60 fullerene fractals in carbon disulphide solution. J. Chem. Phys. 119, 4529 (2003). https://doi.org/10.1063/1.1594177

S. Nath, H. Pal, D.K. Palit, A.V. Sapre, J.P. Mittal. Aggregation of fullerene, C60, in benzonitrile. J. Phys. Chem. B. 102, 10158 (1998). https://doi.org/10.1021/jp9824149

N.O. Mchedlov-Petrossyan, N.N. Kamneva, Y.T.M. Al-Shuuchi, A.I. Marynin, O.S. Zozulia. Formation and ageing of the fullerene C60 colloids in polar organic solvents. J. Mol. Liq. 235, 98 (2017). https://doi.org/10.1016/j.molliq.2016.10.113

S. Nath, H. Pal, A.V. Sapre. Effect of solvent polarity on the aggregation of C60. Chem. Phys. Lett. 327, 143 (2000). https://doi.org/10.1016/S0009-2614(00)00863-0

N.P. Yevlampieva, Y.F. Biryulin, E.Y. Melenevskaja, V.N. Zgonnik, E.I. Rjumtsev. Aggregation of fullerene C60 in N-methylpyrrolidone. Colloids Surfaces A Physicochem. Eng. Asp. 209, 167 (2002). https://doi.org/10.1016/S0927-7757(02)00177-2

M. Alf'e, B. Apicella, R. Barbella, A. Bruno, A. Ciajolo. Aggregation and interactions of C60 and C70 fullerenes in neat N-methylpyrrolidinone and in N-methylpyrrolidi-none/toluene mixtures. Chem. Phys. Lett. 405, 193 (2005). https://doi.org/10.1016/j.cplett.2005.02.030

O.A. Kyzyma, M.V. Korobov, M.V. Avdeev, V.M. Garamus, V.I. Petrenko, V.L. Aksenov, L.A. Bulavin. Solvatochromism and fullerene cluster formation in C60/N-methyl-2-pyrrolidone. Fullerenes, Nanotub. Carbon Nanostruct. 18, 458 (2010). https://doi.org/10.1080/1536383X.2010.487778

S.V. Snegir, T.V. Tropin, O.A. Kyzyma, M.O. Kuzmenko, V.I. Petrenko, V.M. Garamus, M.V. Korobov, M.V. Avdeev, L.A. Bulavin. On a specific state of C60 fullerene in N-methyl-2-pyrrolidone solution: Mass spectrometric study. Appl. Surf. Sci. 481, 1566 (2019). https://doi.org/10.1016/j.apsusc.2019.03.168

O.A. Kyzyma, M.V. Korobov, M.V. Avdeev, V.M. Garamus, S.V. Snegir, V.I. Petrenko, V.L. Aksenov, L.A. Bulavin. Aggregate development in C60/N-methyl-2-pyrrolidone solution and its mixture with water as revealed by extraction and mass spectroscopy. Chem. Phys. Lett. 493, 103 (2010). https://doi.org/10.1016/j.cplett.2010.04.076

O.B. Karpenko, V.V. Trachevskij, O.V. Filonenko, V.V. Lobanov, M.V. Avdeev, T.V. Tropin, O.A. Kyzyma, S.V. Snegir. NMR study of non-equilibrium state of fullerene C60 in N-methyl-2-pyrrolidone. Ukr. J. Phys. 57, 860 (2012).

G.V. Andrievsky, M.V. Kosevich, O.M. Vovk, V.S. Shelkovsky, L.A. Vashchenko. On the production of an aqueous colloidal solution of fullerenes. J. Chem. Soc. Chem. Commun. 12, 1281 (1995). https://doi.org/10.1039/c39950001281

J.A. Brant, J. Labille, J.-Y. Bottero, M.R. Wiesner. Characterizing the impact of preparation method on fullerene cluster structure and chemistry. Langmuir 22, 3878 (2006). https://doi.org/10.1021/la053293o

E.A. Kyzyma, A.A. Tomchuk, L.A. Bulavin, V.I. Petrenko, L. Almasy, M.V. Korobov, D.S. Volkov, I.V. Mikheev, I.V. Koshlan, N.A. Koshlan, M.V. Avdeev, V.L. Aksenov. Structure and toxicity of aqueous fullerene C60 solutions. J. Surf. Investig. X-Ray, Synchrotron Neutron Tech. 9, 1 (2015). https://doi.org/10.1134/S1027451015010127

Y.I. Prylutskyy, V.I. Petrenko, O.I. Ivankov, O.A. Kyzyma, L.A. Bulavin, O.O. Litsis, M.P. Evstigneev, V.V. Cherepanov, A.G. Naumovets, U. Ritter. On the origin of C60 fullerene solubility in aqueous solution. Langmuir 30, 3967 (2014). https://doi.org/10.1021/la404976k

Y.I. Prylutskyy, M.P. Evstigneev, V.V. Cherepanov, O.A. Kyzyma, L.A. Bulavin, N.A. Davidenko, P. Scharff. Structural organization of C60 fullerene, doxorubicin, and their complex in physiological solution as promising antitumor agents. J. Nanoparticle Res. 17, 45 (2015). https://doi.org/10.1007/s11051-015-2867-y

A.O. Khokhryakov, M.V. Avdeev, V.L. Aksenov, L.A. Bulavin. Structural organization of colloidal solution of fullerene C60 in water by data of small angle neutron scattering. J. Mol. Liq. 127, 73 (2006). https://doi.org/10.1016/j.molliq.2006.03.019

L.A. Bulavin, I. Adamenko, Y. Prylutskyy, S. Durov, A. Graja, A. Bogucki, P. Scharff. Structure of fullerene C60 in aqueous solution. Phys. Chem. Chem. Phys. 2, 1627 (2000). https://doi.org/10.1039/a907786c

Y.I. Prylutskyy, V.V. Cherepanov, M.P. Evstigneev, O.A. Kyzyma, V.I. Petrenko, V.I. Styopkin, L.A. Bulavin, N.A. Davidenko, D. Wyrzykowski, A. Woziwodzka, J. Piosik, R. Kazmierkiewicz, U. Ritter. Structural self-organization of C60 and cisplatin in physiological solution. Phys. Chem. Chem. Phys. 17, 26084 (2015). https://doi.org/10.1039/C5CP02688A

N. Jargalan, T.V. Tropin, M.V. Avdeev, V.L. Aksenov. Investigation of the dissolution kinetics of fullerene C60 in solvents with different polarities by UV-Vis spectroscopy. J. Surf. Investig. X-Ray, Synchrotron Neutron Tech. 9, 12 (2015). https://doi.org/10.1134/S102745101501019X

T.V. Tropin, M.V. Avdeev, N. Jargalan, M.O. Kuzmenko, V.L. Aksenov. Kinetics of cluster growth in fullerene solutions of different polarity. Mod. Probl. Phys. Liq. Syst. 249 (2019).

S. Nath, H. Pal, A.V. Sapre. Effect of solvent polarity on the aggregation of fullerenes: a comparison between C60 and C70. Chem. Phys. Lett. 360, 422 (2002). https://doi.org/10.1016/S0009-2614(02)00780-7

O.A. Kyzyma, L.A. Bulavin, V.L. Aksenov, T.V. Tropin, M.V. Avdeev, M.V. Korobov, S.V. Snegir, L. Rosta. Aggregation in C60/NMP, C60/NMP/water and C60/NMP/toluene mixtures. Fullerenes, Nanotub. Carbon Nanostruct. 16, 610 (2008). https://doi.org/10.1080/15363830802312982

N. Jargalan, T.V. Tropin, M.V. Avdeev, V.L. Aksenov. Investigation and modeling of evolution of C60/NMP solution UV-Vis spectra. Nanosyst. Physics, Chem. Math. 7, 99 (2016). https://doi.org/10.17586/2220-8054-2016-7-1-99-103

M. Alf'e, R. Barbella, A. Bruno, P. Minutolo, A. Ciajolo. Solution behaviour of C60 fullerene in N-methylpyrrolidinone/toluene mixtures. Carbon 43, 665 (2005). https://doi.org/10.1016/j.carbon.2004.10.017

T.V. Nagorna, O.A. Kyzyma, L.A. Bulavin, D. Chudoba, V.M. Garamus, M.V. Avdeev, V.L. Aksenov. Specifics of C60 fullerene cluster formation in a solvent mixture of toluene and N-methyl-2-pyrollidone. J. Surf. Investig. 12, 872 (2018). https://doi.org/10.1134/S1027451018050063

R.G. Alargova, S. Deguchi, K. Tsujii. Stable colloidal dispersions of fullerenes in polar organic solvents. J. Am. Chem. Soc. 123, 10460 (2001). https://doi.org/10.1021/ja010202a

Z.Meng, S.M. Hashmi, M. Elimelech. Aggregation rate and fractal dimension of fullerene nanoparticles via simultaneous multiangle static and dynamic light scattering measurement. J. Colloid Interface Sci. 392, 27 (2013). https://doi.org/10.1016/j.jcis.2012.09.088

T.V. Tropin, M.V. Avdeev, O.A. Kyzyma, V.L. Aksenov. Nucleation theory models for describing kinetics of cluster growth in C60/NMP solutions. Phys. Status Solidi B 247, 3022 (2010). https://doi.org/10.1002/pssb.201000119

T.V. Tropin, M.V. Avdeev, O.A. Kyzyma, R.A. Yeremin, N. Jargalan, M.V. Korobov, V.L. Aksenov. Towards description of kinetics of dissolution and cluster growth in C60/NMP solutions. Phys. Status Solidi B 248, 2728 (2011). https://doi.org/10.1002/pssb.201100099

T.V. Tropin, N. Jargalan, M.V. Avdeev, O.A. Kyzyma, R.A. Eremin, D. Sangaa, V.L. Aksenov. Kinetics of cluster growth in polar solutions of fullerene: Experimental and theoretical study of C60/NMP solution. J. Mol. Liq. 175, 4 (2012). https://doi.org/10.1016/j.molliq.2012.08.003

T.V. Tropin, V.L. Aksenov. Theoretical study of the effect of decrease of cluster sizes on dilution of a solution with water. J. Exp. Theor. Phys. 128, 274 (2019). https://doi.org/10.1134/S1063776119010187

T.V. Tropin, M.V. Avdeev, V.L. Aksenov. Modeling of the evolution of the cluster-size distribution functions in polar fullerene C60 solutions. J. Surf. Investig. X-Ray, Synchrotron Neutron Tech. 13, 82 (2019). https://doi.org/10.1134/S102745101901035X

V.L. Aksenov, M.V. Avdeev, T.V. Tropin, V.B. Priezzhev, J.W.P. Schmelzer. Cluster growth and dissolution of fullerenes in non-polar solvents. J. Mol. Liq. 127, 142 (2006). https://doi.org/10.1016/j.molliq.2006.03.038

V.L. Aksenov, T.V. Tropin, M.V. Avdeev, V.B. Priezzhev, J.W.P. Schmelzer. Kinetics of cluster growth in fullerene molecular solutions. Phys. Part. Nucl. 36, S52 (2005).

T.O. Kyrey, O.A. Kyzyma, M.V. Avdeev, T.V. Tropin, M.V. Korobov, V.L. Aksenov, L.A. Bulavin. Absorption characteristics of fullerene C60 in N-methyl-2-pirrolidone/toluene mixture. Fullerenes, Nanotub. Carbon Nanostruct. 20, 341 (2012). https://doi.org/10.1080/1536383X.2012.655173

T.V. Tropin, T.O. Kyrey, O.A. Kyzyma, A.V. Feoktistov, M.V. Avdeev, L.A. Bulavin, L. Rosta, V.L. Aksenov. Experimental investigation of C60/NMP/toluene solutions by UV-vis spectroscopy and small angle neutron scattering. J. Surf. Investig. X-Ray, Synchrotron Neutron Tech. 7, 5 (2013). https://doi.org/10.1134/S1027451013010199

L.A. Bulavin, Y. Prylutskyy, O. Kyzyma, M. Evstigneev, U. Ritter, P. Scharff. Self-organization of pristine C60 fullerene and its complexes with chemotherapy drugs in aqueous solution as promising anticancer agents. Modern Problems of Molecular Physics, edited by L.A. Bulavin, A.V. Chalyi (Springer, 2018) Chap. 1. https://doi.org/10.1007/978-3-319-61109-9_1

Y.I. Prylutskyy, V.V. Cherepanov, V.V. Kostjukov, M.P. Evstigneev, O.A. Kyzyma, L.A. Bulavin, O. Ivankov, N.A. Davidenko, U. Ritter. Study of the complexation between Landomycin A and C60 fullerene in aqueous solution. RSC Adv. 6, 81231 (2016). https://doi.org/10.1039/C6RA18807A

S. Andreev, D. Purgina, E. Bashkatova, A. Garshev, A. Maerle, I. Andreev, N. Osipova, N. Shershakova, M. Khaitov. Study of fullerene aqueous dispersion prepared by novel dialysis method: Simple way to fullerene aqueous solution. Fullerenes, Nanotub. Carbon Nanostruct. 23, 792 (2015). https://doi.org/10.1080/1536383X.2014.998758

O.A. Kyzyma, M.V. Avdeev, O.I. Bolshakova, P. Melentev, S.V. Sarantseva, O.I. Ivankov, M.V. Korobov, I.V. Mikheev, T.V. Tropin, M. Kubovcikova, P. Kopcansky, V.F. Korolovych, V.L. Aksenov, L.A. Bulavin. State of aggregation and toxicity of aqueous fullerene solutions. Appl. Surf. Sci. 483, 69 (2019). https://doi.org/10.1016/j.apsusc.2019.03.167

Published
2020-07-30
How to Cite
Tropin, T., Jargalan, N., Avdeev, M., & Aksenov, V. (2020). Investigations of the Kinetics of Cluster Growth in Fullerene C60 Solutions. Ukrainian Journal of Physics, 65(8), 701. https://doi.org/10.15407/ujpe65.8.701
Section
Surface physics

Most read articles by the same author(s)