Ionization Balance in Low-Temperature Plasmas with Nanosized Dust


  • V.I. Vishnyakov Physical-Chemical Institute for Environment and Human Protection, Min. Edu. Sci. and Nat. Acad. of Sci. of Ukraine



dusty plasmas, surface ionization, thermionic emission


Ionization mechanisms in the low-temperature thermal plasma, which contains alkali metal atoms as ionizable component and nanosized dust grains, are studied. In such a plasma, electrons are captured by dust grains, because the work function of grains depends on their sizes, and the electron adsorption rate is more than the thermionic emission rate for nanosized grains. Accordingly, an increase of the dust grain number leads to a decrease in the volume ionization and recombination rates, because they depend on the number density of electrons. At the same time, the role of surface processes in the plasma ionization balance is increased, because the total grain surface is increased. The approximate calculation techniques for low and high grain number densities are proposed. The criterions for approximate calculations are specified.


M. Mitchner, C.H. Kruger. Partially Ionized Gases (Wiley, 1973) [ISBN: 978-0471611721].

H.F. Calcote, R.N. Pease. Electrical properties of fl ames. Burner fl ames in longitudinal electric fi elds. Ind. Eng. Chem. 43, 2726 (1951).

T.M. Sugden, B.A. Thrush. A cavity resonator method for electron concentration in fl ames. Nature 168, 703 (1951).

K.E. Shuler, J. Weber. A microwave investigation of the ionization of hydrogen-oxygen and acetylene-oxygen flames. J. Chem. Phys. 22, 491 (1954).

H. Einbinder. Generalized equation for the ionization of solid particles. J. Chem. Phys. 26, 948 (1957).

A.A. Arshinov, A.K. Musin. Thermionic emission from carbon particles. Soviet Physics Doklady 3, 99 (1958).

A.A. Arshinov, A.K. Musin. Equilibrium ionization of particles. Soviet Physics Doklady 3, 588 (1958).

E.G. Gibson. Ionization phenomena in a gas-particles plasma. Phys. Fluids 9, 2389 (1966).

M.S. Sodha, P.K. Kaw. Field emission from negatively charged solid particles. J. Phys. D: Appl. Phys. 1, 1303 (1968).

D.I. Zhukhovitskii, A.G. Khrapak, I.T. Yakubov. Ionization equilibrium in a highly nonideal plasma containing a condensed dispersed phase. Teplofiz. Vys. Temp. 22, 833 (1984) [High Temp. 22, 643 (1985)].

I.T. Yakubov, A.G. Khrapak. Thermophysical and electrophysical properties of low-temperature plasma with condensed disperse phase. In: Soviet Technology Reviews/Section B, Thermal Physics Reviews. Edited by A.E. Sceindlin, V.E. Fortov (Harwood Academic Pablishers, 1989), Vol. 2, P. 269 [ISBN: 3-7186-4909-8].

J. Goree. Charging of particles in plasma. Plasma Sources Sci. Technol. 3, 400 (1994).

P.K. Shukla, A.A. Mamun. Introduction to Dusty Plasma Physics (Institute of Physics, Bristol, 2002) [ISBN: 978-0750306539].

V.E. Fortov, A.G. Khrapak, S.A. Khrapak, V.I. Molotkov, O.F. Petrov. Dusty plasmas. Phys. Uspekhi 47, 447 (2004).

M.S. Sodha, S.K. Mishra. Validity of Saha's equation of thermal ionization for negatively charged spherical particles in complex plasmas in thermal equilibrium. Phys. Plasmas 18, 044502 (2011).

S.J. Desch, N.J. Turner. High-temperature ionization in protoplanetary disks. Astrophys. J. 811, 156 (2015).

V.I. Vishnyakov, S.V. Kozytsyi, A.A. Ennan. Change of ionization mechanism in the welding fume plasma from gas metal arc welding. Aerosol Sci. Engin. 3, 49 (2019).

V.I. Vishnyakov, S.V. Kozytsyi, A.A. Ennan. Features of nucleation in welding fumes from gas metal arc welding. J. Aerosol Sci. 137, 105439 (2019).

V.I. Vishnyakov, S.A. Kiro, M.V. Oprya, O.D. Chursina, A.A. Ennan. Numerical and experimental study of the fume chemical composition in gas metal arc welding. Aerosol Sci. Engin. 2, 109 (2018).

V.I. Vishnyakov, S.A. Kiro, M.V. Oprya, A.A. Ennan. Effect of shielding gas temperature on the welding fune particle formation: Theoretical model. J. Aerosol Sci. 124, 112 (2018).

M.J. Dresser. The Saha-Langmuir equation and its application. J. Appl. Phys. 39, 338 (1968).

B.M. Smirnov. Processes in plasma and gases involving clusters. Phys. Uspekhi 40, 1117 (1997).

V.I. Vishnyakov. Probe in the thermal collision plasma. Phys. Plasmas 14, 013502 (2007).

V.E. Fortov, I.T. Yakubov. The Physics of Non-Ideal Plasma (World Scientifi c, 2000) [ISBN: 978-0891166047].

V.I. Vishnyakov. Thermo-emission (dust-electron) plasmas: Theory of neutralizing charges. Phys. Rev. E 74, 036404 (2006).

V.I. Vishnyakov. Charging of dust in thermal collisional plasmas. Phys. Rev. E 85, 026402 (2012).

V.I. Vishnyakov. Homogeneous nucleation in thermal dust-electron plasmas. Phys. Rev. E 78, 056406 (2008).

V.I. Vishnyakov, S.A. Kiro, A.A. Ennan. Heterogeneous ion-induced nucleation in thermal dusty plasmas. J. Phys. D: Appl. Phys. 44, 215201 (2011).

V.I. Vishnyakov, S.A. Kiro, A.A. Ennan. Formation of primary particles in welding fume. J. Aerosol Sci. 58, 9 (2013).

V.I. Vishnyakov, S.A. Kiro, A.A. Ennan. Bimodal size distribution of primary particles in the plasma of welding fume: Coalescence of nuclei. J. Aerosol Sci. 67, 13 (2014).

V.I. Vishnyakov, G.S. Dragan, V.M. Evtuhov. Nonlinear Poisson-Boltzmann equation in spherical symmetry. Phys. Rev. E 76, 036402 (2007).

V.I. Vishnyakov, S.A. Kiro, M.V. Oprya, O.I. Shvets, A.A. Ennan. Nonequilibrium ionization of welding fume plasmas; Eff ect of potassium additional agent on the particle formation. J. Aerosol Sci. 113, 178 (2017).




How to Cite

Vishnyakov, V. (2021). Ionization Balance in Low-Temperature Plasmas with Nanosized Dust. Ukrainian Journal of Physics, 66(4), 303.



Plasma physics