Liquid Systems with Fullerenes in Organic Solvents and Aqueous Media
DOI:
https://doi.org/10.15407/ujpe65.9.761Keywords:
fullerene solutions, solvatochromic effect, aggregation, toxicityAbstract
The unique properties of nanocarbon materials – in particular, fullerenes – has led in recent years to the expansion of the spectrum of their application in various fields of the industry, including the chemical, energy, and pharmaceutical ones. The use of fullerenes in new industries poses new challenges to the scientific and research community. Thus, new methods of obtaining biocompatible liquid systems with small-sized monodisperse fullerene aggregates are still being sought. The paper focuses on the properties of fullerene solutions in mixtures of organic solvents, which serve as a basis for the development of new methods for synthesizing the aqueous liquid systems with fullerenes.
References
M.S. Dresselhaus, G. Dresslhaus. Fullerenes and fullerene derived solids as electronic materials. Annu. Rev. Mater. Sci. 25, 487 (1995). https://doi.org/10.1146/annurev.ms.25.080195.002415
J. Coro, M. Suarez, L.S.R. Silva et al. Fullerene applications in fuel cells: A review. Annu. Rev. Mater. Sci. 41, 17944 (2016). https://doi.org/10.1016/j.ijhydene.2016.08.043
E. Castro, A. Hernandez Garcia, G. Zavala, L. Echegoyen. Fullerenes in biology and medicine. J. Mater. Chem. B 5, 6523 (2017). https://doi.org/10.1039/C7TB00855D
U. Ritter, P. Scharff, Yu.I. Prylutskyy, V. Cherepanov, A. Senenko, O. Kyzyma, O. Litsis, A. Naumovets. Synthesis and characteristics of C60 fullerene aqueous colloid. In: Multifunctional Nanomaterials for Biology and Medicine: Molecular Design, Synthesis and Application. Edited by R.S. Stoika (Naukova Dumka, 2017), p. 84.
L.A. Bulavin, Y. Prylutskyy, O. Kyzyma et al. Self-organization of pristine C60 fullerene and its complexes with chemotherapy drugs in aqueous solution as promising anticancer agents. In: Modern Problems of Molecular Physics. Edited by L. Bulavin, A. Chalyi (Springer, 2018), p. 3. https://doi.org/10.1007/978-3-319-61109-9_1
O. Kyzyma, N. Bashmakova, Yu. Gorshkova et al. Interaction between the plant alkaloid berberine and fullerene C70: Experimental and quantum-chemical study. J. Mol. Liq. 278, 452 (2019). https://doi.org/10.1016/j.molliq.2019.01.062
S. Goodarzi, T. Da Ros, J. Conde et al. Fullerene: Biomedical engineers get to revisit an old friend. Mater. Today 20, 460 (2017). https://doi.org/10.1016/j.mattod.2017.03.017
N.O. Mchedlov-Petrossyan. Fullerenes in liquid media: an unsettling intrusion into the solution chemistry. Chem. Rev. 113, 5149 (2013). https://doi.org/10.1021/cr3005026
O.A. Kyzyma, A.V. Tomchuk, M.V. Avdeev et al. Structural researches of carbonic fluid nanosystems. Ukr. J. Phys. 60, 835 (2015). https://doi.org/10.15407/ujpe60.09.0835
V.N. Bezmel'nitsyn, A.V. Eletskii, M.V. Okun'. Fullerenes in solutions. Ukr. J. Phys. 41, 1091 (1998). https://doi.org/10.1070/PU1998v041n11ABEH000502
N.O. Mchedlov-Petrossyan, N.N. Kamneva, Y.T.M. Al-Shuuchi et al. The peculiar behavior of fullerene C60 in mixtures of "good" and polar solvents: Colloidal particles in the toluene-methanol mixtures and some other systems. Colloid. Surf. A 509, 631 (2016). https://doi.org/10.1016/j.colsurfa.2016.09.045
N.O. Mchedlov-Petrossyan. Fullerenes in aqueous media: A review. Theor. Exper. Chem. 55, 361 (2020). https://doi.org/10.1007/s11237-020-09630-w
M.V. Korobov, A.L. Mirakian, N.V. Avramenko et al. C60·Bromobenzene solvate: Crystallographic and thermochemical studies and their relationship to C60 solubility in bromobenzene. J. Phys. Chem. B 102, 3712 (1998). https://doi.org/10.1021/jp9804401
K. Kokubo, K. Matsubayashi, H. Tategaki, H. Takada, T. Oshima. Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups. ACS Nano 2, 327(2008). https://doi.org/10.1021/nn700151z
A. Djordjevic, J.M. Canadanovic-Brunet, M. Vojinovic-Miloradov, G. Bogdanovic. Antioxidant properties and hypothetic radical mechanism of fullerenol C60(OH)24. Oxid. Commun. 27, 30 (2020).
V.T. Lebedev, Yu.V. Kulvelis, A.S. Voronin, A.V. Komolkin, E.A. Kyzyma, T.V. Tropin, V.M. Garamus. Mechanisms of supramolecular ordering of water-soluble derivatives of fullerenes in aqueous media. Fulleren. Nanotub. Carbon Nanostruct. 28, 30 (2020). https://doi.org/10.1080/1536383X.2019.1671362
G.V. Andrievsky, M.V. Kosevich, O.M. Vovk et al. On the production of an aqueous colloidal solution of fullerenes. J. Chem. Soc. Chem. Commun. 12, 1281 (1995). https://doi.org/10.1039/c39950001281
M.V. Avdeev, A.A. Khokhryakov, T.V. Tropin et al. Colloidal solutions of C60 fullerenes in water by small-angle neutron scattering. Langmuir 20, 4363 (2004). https://doi.org/10.1021/la0361969
D.M. Guld. Capped fullerenes: Stabilization of water-soluble fullerene monomers as studied by flash photolysis and pulse radiolysis. J. Phys. Chem. A 101, 3895 (1997). https://doi.org/10.1021/jp9702863
T. Andersson, K. Nilsson, M. Sundahl, G. Westman, O. Wennerstr¨om. C60 embedded in y-cyclodextrin: A water-soluble fullerene. J. Chem. Soc. Chem. Commun. 8, 604 (1992). https://doi.org/10.1039/C39920000604
C. Isaacson, W. Zhang, T. Powell, X. Ma, D. Bouchard. Temporal changes in aqu/C60 physical-chemical, deposition, and transport characteristics in aqueous systems. Sci. Technol. 45l, 5170 (2011). https://doi.org/10.1021/es1041145
W. Jiang, B.Y.S. Kim, Y.T. Rutka, W.C.W. Chan. Nanoparticle mediated cellular response is size-dependent. Nat. Nanotechnol. 3, 145 (2008). https://doi.org/10.1038/nnano.2008.30
E.M. Hotze, J.Y. Bottero, M.R. Wiesner. Theoretical framework for nanoparticle reactivity as a function of aggregation state. Langmuir 26, 11170 (2010). https://doi.org/10.1021/la9046963
Y. Ha, L.E. Katz, H.M. Liljestrand. Distribution of fullerene nanoparticles between water and solid supported lipid membranes: thermodynamics and effects of membrane composition on distribution. Environ. Sci. Technol. 49, 14546 (2015). https://doi.org/10.1021/acs.est.5b03339
F. Migliardo, V. Magazu, M. Migliardo. Structural properties of C60 in solution. J. Mol. Liq 110, 3 (2004). https://doi.org/10.1016/j.molliq.2003.08.010
S. Nath, H. Pal, D. Palit, A. Sapre and J. Mittal. Aggregation of fullerene, C60, in benzonitrile. J. Phys. Chem. B 102, 10158 (1998). https://doi.org/10.1021/jp9824149
R.G. Alargova, S. Deguchi, K. Tsujii. Stable colloidal dispersions of fullerenes in polar organic solvents. J. Am. Chem. Soc. 123, 10460 (2001). https://doi.org/10.1021/ja010202a
M.V. Avdeev, T.V. Tropin, I.A. Bodnarchuk et al. On structural features of fullerene C60 dissolved in carbon disulfide: Complementary study by small-angle neutron scattering and molecular dynamic simulations. J. Chem. Phys. 132, 164515 (2010). https://doi.org/10.1063/1.3415500
D. Alok, B. Patnaik, A. Patnaik. Microscopic diffusion model applied to C60 fullerene fractals in carbondisulphide solution. J. Chem. Phys. 119, 4529 (2003). https://doi.org/10.1063/1.1594177
S. Nath, H. Pal, A.V. Sapre. Effect of solvent polarity on the aggregation of C60. Chem. Phys. Lett. 327, 143 (2000). https://doi.org/10.1016/S0009-2614(00)00863-0
S. Nath, H. Pal, A.V. Sapre. Effect of solvent polarity on the aggregation of fullerenes: A comparison between C60 and C70. Chem. Phys. Lett. 360, 422 (2002). https://doi.org/10.1016/S0009-2614(02)00780-7
N.O. Mchedlov-Petrossyan, N.N. Kamneva, Y.T.M. Al-Shuuchi, A.I. Marynin, O.S. Zozulia. The peculiar behaviors of fullerene C60 in mixtures of "good" and polar solvents: Colloidal particles in the toluene-methanol mixtures and some other systems. J. Mol. Liq. 235, 98 (2017). https://doi.org/10.1016/j.molliq.2016.10.113
M. Alf'e, B. Apicella, R. Barbella, A. Bruno and A. Ciajolo. Aggregation and interactions of C60 and C70 fullerenes in neat N-methylpyrrolidinone and in N-methylpyrrolidinone/toluene mixtures. Chem. Phys. Lett. l 405, 193 (2005). https://doi.org/10.1016/j.cplett.2005.02.030
M.V. Avdeev, V.L. Aksenov, T.V. Tropin. Models of cluster formation in solutions of fullerenes. Russ. J. Phys. Chem. 84, 1273 (2010). https://doi.org/10.1134/S0036024410080017
N.O. Mchedlov-Petrossyan, N.N. Kamneva, Y.T.M. Al-Shuuchi, A.I. Marynin, O.S. Zozulia, A.P. Kryshtal, V.K. Klochkov, S.V. Shekhovtsov. Towards better understanding of C60 organosols. Phys. Chem. Chem. Phys. 18, 2517 (2016). https://doi.org/10.1039/C5CP06806A
I.V. Mikheev, E.S. Khimich, A.T. Rebrikova, D.S. Volkov, M.A. Proskurnin, M.V. Korobov. Quasi-equilibrium distribution of pristine fullerenes C60 and C70 in a water-toluene system. Carbon 111, 191 (2017). https://doi.org/10.1016/j.carbon.2016.09.065
T.V. Nagorna, M.O. Kuzmenko, O.A. Kyzyma, D. Chudoba, A.V. Nagornyi, T.V. Tropin, V.M. Garamus, M. Jazdzewska, L.A. Bulavin. Structural reorganization of fullerene C70 in N-methyl-2-pyrrolidone/toluene mixtures. J. Mol. Liq. 272, 948 (2018). https://doi.org/10.1016/j.molliq.2018.10.110
L.A. Bulavin, T.V. Nagorna, D. Chudoba, O.A. Kyzyma, O.I. Ivankov. Small-angle neutron scattering by liquid systems of fullerenes C60 and C70. Yad. Fiz. Energ. 19, 252 (2018) (in Ukrainian).
I.V. Mikheev, I.E. Kareev, V.P. Bubnov, D.S. Volkov, M.V. Korobov, M.A. Proskurnin. Development of standard reference samples of aqueous fullerene dispersions. J. Anal. Chem. 73, 837 (2018). https://doi.org/10.1134/S106193481809006X
A. Mrzel, A. Mertelj, A. Omerzu, M. Copia, D. Mihailovic. Investigation of encapsulation and solvatochromism of fullerenes in binary solvent mixtures. J. Phys. Chem. B. 103, 11256 (1999). https://doi.org/10.1021/jp992637e
A. Dhawan, J.S. Taurozzi, A.K. Pandey, W. Shan, S.M. Miller, S.A. Hashsham, V.V. Tarabara. Stable colloidal dispersions of C60 fullerenes in water: Evidence for genotoxicity. Environ. Sci. Technol. 40, 7394 (2006).https://doi.org/10.1021/es0609708
S.V. Prylutska, I.I. Grynyuk, O.P. Matyshevska, Yu.I. Prylutskyy, U. Ritter, P. Scharff. Anti-oxidant properties of C60 fullerenes in vitro. Fulleren. Nanotub. Carbon Nanostruct. 42, 698 (2008). https://doi.org/10.1080/15363830802317148
A.H. Ringwood, N. Levi-Polyachenko, D.L. Carroll. Fullerene exposures with oysters: Embryonic, adult, and cellular responses. Environ. Sci. Technol. 43, 7136 (2009). https://doi.org/10.1021/es900621j
T. Mori, H. Takada, S. Ito, K. Matsubayashi, N. Miwa, T. Sawaguchi. Preclinical studies on safety of fullerene upon acute oral administration and evaluation for no mutagenesis. Toxicology 225, 48 (2006). https://doi.org/10.1016/j.tox.2006.05.001
T.V. Tropin, N. Jargalan, M.V. Avdeev, O.A. Kyzyma, D. Sangaa, V.L. Aksenov. The calculation of cluster size distribution functions and SANS data for C60/NMP solution. Phys. Solid State 56, 148 (2014). https://doi.org/10.1134/S1063783414010363
T.V. Tropin, N. Jargalan, M.V. Avdeev, O.A. Kyzyma, R.A. Eremin, D. Sangaa, V.L. Aksenov. Kinetics of cluster growth in polar solutions of fullerene: Experimental and theoretical study of C60/NMP solution. J. Mol. Liq. 175, 4 (2012). https://doi.org/10.1016/j.molliq.2012.08.003
T.V. Tropin, M.V. Avdeev, O.A. Kyzyma, V.L. Aksenov. Nucleation theory models for describing kinetics of cluster growth in C60/NMP solutions. Phys. Status Solidi B 247, 3022 (2010). https://doi.org/10.1002/pssb.201000119
O.A. Kyzyma, L.A. Bulavin, V.L. Aksenov, M.V. Avdeev, T.V. Tropin, M.V. Korobov, S.V. Snegir, L. Rosta. Organization of fullerene clusters in the system C60/N-metyl-2-pyrrolidone. Mater. Struct. 15, 17 (2008).
T.V. Nagorna, O.A. Kyzyma, L.A. Bulavin et al. Specifics of C60 fullerene cluster formation in a solvent mixture of toluene and N-methyl-2-pyrollidone. J. Synch. Investig. 12, 872 (2018). https://doi.org/10.1134/S1027451018050063
T.V. Tropin, T.O. Kyrey, O.A. Kyzyma, A.V. Feoktistov, M.V. Avdeev, L.A. Bulavin, L. Rosta, V.L. Aksenov. Experimental investigation of C60/NMP/toluene solutions by UV-Vis spectroscopy and small-angle neutron scattering. J. Synch. Investig. 7, 1 (2013). https://doi.org/10.1134/S1027451013010199
Y.P. Sun, C.E. Bunker. C70 in solvent mixtures. Nature 36, 398 (1993). https://doi.org/10.1038/365398a0
H.N. Ghosh, A.V. Sapre, J.P. Mittal. Aggregation of C70 in solvent mixtures. J. Phys. Chem. 100, 9439 (1996). https://doi.org/10.1021/jp9535046
O.A. Kyzyma, T.O. Kyrey, M.V. Avdeev, M.V. Korobov, L.A. Bulavin, V.L. Aksenov. Non-reversible solvatochromism in N-methyl-2-pyrrolidone/toluene mixed solutions of fullerene C60. Chem. Phys. Lett. 556, 178 (2013). https://doi.org/10.1016/j.cplett.2012.11.040
T.V. Nagorna, O.A. Kyzyma, D. Chudoba, A.V. Nagornyi. Temporal solvatochromic effect in ternary C70/toluene/N-methyl-2-pyrrolidone solution. J.Mol. Liq. 235, 111 (2017). https://doi.org/10.1016/j.molliq.2016.12.017
O.A. Kyzyma, M.V. Korobov, M.V. Avdeev, V.M. Garamus, V.I. Petrenko, V.L. Aksenov, L.A. Bulavin. Solvatochromism and fullerene cluster formation in C60/N-methyl-2-pyrrolidone. Fulleren. Nanotub. Carbon Nanostruct. 18, 458 (2010). https://doi.org/10.1080/1536383X.2010.487778
T.O. Kyrey, O.A. Kyzyma, M.V. Avdeev,T.V. Tropin, M.V. Korobov, V.L. Aksenov, L.A. Bulavin. Absorption characteristics of fullerene C60 in N-methyl-2-pirrolidone/toluene mixture. Fulleren. Nanotub. Carbon Nanostruct. 20, 341 (2010). https://doi.org/10.1080/1536383X.2012.655173
L.A. Bulavin, T.V. Nagorna, O.A. Kyzyma, D. Chudoba, O.I. Ivankov, A.V. Nagornyi, M.V. Avdeev. Fullerene clustering in C70/N-methyl-2-pyrrolidone/toluene liquid system. Ukr. J. Phys. 63, 116 (2018). https://doi.org/10.15407/ujpe63.2.116
S.V. Snegir, T.V. Tropin, O.A. Kyzyma, M.O. Kuzmenko, V.I. Petrenko, V.M. Garamus, M.V. Korobov, M.V. Avdeev, L.A. Bulavin. On a specific state of C60 fullerene in N-methyl-2-pyrrolidone solution: Mass spectrometric study. Appl. Surf. Sci. 481, 1566 (2019). https://doi.org/10.1016/j.apsusc.2019.03.168
O.B. Karpenko, S.V. Snegir, O.A. Kyzyma et al. Features of ion formation of fullerene C60 in mass spectrometry with laser desorption/ionization. Nanosyst. Nanomater. Nanotekhnol. 10, 763 (2012) (in Ukrainian).
A.A. Kaznacheevskaya, O.A. Kizima, L.A. Bulavin, A.V. Tomchuk, V.M. Garamus, M.V. Avdeev. Reorganization of the cluster state in a C60/N-methylpyrrolidone/water solution: Comparative characteristics of dynamic light scattering and small-angle neutron scattering data. J. Synch. Investig. 7, 1133 (2013). https://doi.org/10.1134/S102745101306030X
V.L. Aksenov, M.V. Avdeev, O.A. Kyzyma, L. Rosta, M.V. Korobov. Effect of the age of the C60/N-methyl-2-pyrrolidone solution on the structure of clusters in the C60/N-methyl-2-pyrrolidone/water system according to the small-angle neutron scattering data. Cryst. Rep. 52, 479 (2007). https://doi.org/10.1134/S106377450703025X
O.A. Kyzyma, M.V. Korobov, M.V. Avdeev, V.M. Garamus, S.V. Snegir, V.I. Petrenko, V.L. Aksenov, L.A. Bulavin. Aggregate development in C60/N-metyl-2-pyrrolidone solution and its mixture with water as revealed by extraction and mass spectroscopy. Chem. Phys. Lett. 493, 103 (2010). https://doi.org/10.1016/j.cplett.2010.04.076
O.A. Kyzyma, M.V. Avdeev, V.L. Aksenov, L.A. Bulavin, S.V. Snegir. Reorganization of fullerene clusters in the system C60/N-metyl-2-pyrrolidone/water. J. Synch. Investig. 12, 11 (2008).
T.V. Tropin, M.V. Avdeev, O.A. Kyzyma, R.A. Yeremin, N. Jargalan, M.V. Korobov, V.L. Aksenov. Towards description of kinetics of dissolution and cluster growth in C60/NMP solutions. Phys. Status Solidi B 248, 2728 (2011). https://doi.org/10.1002/pssb.201100099
V.L. Aksenov, T.V. Tropin, O.A. Kyzyma, M.V. Avdeev, M.V. Korobov, L. Rosta. Formation of C60 fullerene clusters in nitrogen-containing solvents. Phys. Solid State 52, 1059 (2010). https://doi.org/10.1134/S1063783410050367
T.V. Tropin, V.L. Aksenov. Theoretical study of the effect of decrease of cluster sizes on dilution of a solution with water. J. Exper. Theor. Phys. 128, 274 (2019). https://doi.org/10.1134/S1063776119010187
O.A. Kyzyma, L.A. Bulavin, V.L. Aksenov et al. Aggregation in C60/NMP, C60/NMP/water and C60/NMP/toluene mixtures. Fulleren. Nanotub. Carbon Nanostruct. 16, 610 (2008). https://doi.org/10.1080/15363830802312982
J.A. Brant, J. Labille, J.-Y. Bottero, N.R. Wiesner. Characterizing the impact of preparation method on fullerene cluster structure and chemistry. Langmuir 22, 3878 (2006). https://doi.org/10.1021/la053293o
J. Brant, H. Lecoanet, M.R. Wiesner. Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J. Nanopart. Res. 7, 545 (2007). https://doi.org/10.1007/s11051-005-4884-8
S.B. Lovern, J.R. Strickler, R. Klaper. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HxC70Hx). Environ. Sci. Technol. 41, 4465 (2007). https://doi.org/10.1021/es062146p
C.M. Sayes et al. Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26, 7587 (2005). https://doi.org/10.1016/j.biomaterials.2005.05.027
S. Matsuda et al. Genotoxicity of colloidal fullerene C60. Environ. Sci. Technol. 45, 4133 (2011). https://doi.org/10.1021/es1036942
S. Deguchi, R.Z. Algarova, K. Tsujii. Stable dispersions of fullerenes, C60 and C70, in water. Preparation and characterization. Langmuir 17, 6013 (2001). https://doi.org/10.1021/la010651o
D.Y. Lyon, L.K. Adams, J.C. Falkner and P.J.J. Alvarez. Antibacterial activity of fullerene water suspensions: Effects of preparation method and particle size. Environ. Sci. Technol. 40, 4360 (2006). https://doi.org/10.1021/es0603655
I.D. Fortner, D.Y. Lyon, C.M. Sayes, A.M. Boyd, J.C. Falkner, E.M. Hotze, L.B. Alemany, Y.I. Tao,W. Guo, K.D. Ausman, V.L. Colvin, J.B. Hughes. C60 in water: Nanocrystal formation and microbial response. Environ. Sci. Technol. 39, 4307 (2005). https://doi.org/10.1021/es048099n
W.A. Scrivens, J.M. Tour, K.E. Creek, L. Pirisi. Synthesis of 14C-labeled C60, its suspension in water, and its uptake by human keratinocytes. J. Am. Chem. Soc. 116, 4517 (1994). https://doi.org/10.1021/ja00089a067
O.A. Kyzyma, M.O. Kuzmenko, L.A. Bulavin, V.I. Petrenko, I.V. Mikheev, M.A. Zabolotnyi, M. Kubovcikova, P. Kopcansky, M.V. Korobov, M.V. Avdeev, V.L. Aksenov. Impact of physiological medium on aggregation state of C60 and C70. J. Synch. Investig. 11, 3 (2016). https://doi.org/10.1134/S1027451016050517
G.L. Baker, A. Gupta, M.L. Clark, B.R. Valenzuela, L.M. Staska, S.J. Harbo, J.T. Pierce, J.A. Dill. Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles. Toxicol. Sci. 101, 122 (2008). https://doi.org/10.1093/toxsci/kfm243
J. Ferin, G. Oberdorster, D.P. Penney. Pulmonary retention of ultrafine and fine particles in rats. Am. J. Respir. Cell Mol. Biol. 6, 535 (1992). https://doi.org/10.1165/ajrcmb/6.5.535
O.A. Kyzyma, M.V. Avdeev, O.I. Bolshakova, P. Melentev, S.V. Sarantseva, O.I. Ivankov, M.V. Korobov, I.V. Mikheev, T.V. Tropin, M. Kubovcikova, P. Kopcansky, V.F. Korolovych, V.L. Aksenov, L.A. Bulavin. State of aggregation and toxicity of aqueous fullerene solutions. Appl. Surf. Sci. 483, 69 (2019). https://doi.org/10.1016/j.apsusc.2019.03.167
E.A. Kyzyma, A.A. Tomchuk, L.A. Bulavin, V.I. Petrenko, L. Almasy, M.V. Korobov, D.S. Volkov, I.V. Mikheev, I.V. Koshlan, N.A. Koshlan, P. Blaha, M.V. Avdeev, V.L. Aksenov. Structure and toxicity of aqueous fullerene C60 solutions. J. Synch. Investig. 9, 5 (2015). https://doi.org/10.1134/S1027451015010127
S. Deguchi, S. Mukai, M. Tsudome, K. Horikoshi. Facile generation of fullerene nanoparticles by hand-grinding. Adv. Mater. 18, 729 (2006). https://doi.org/10.1002/adma.200502487
S. Yang, X. Mulet, T. Gengenbach et al. Limitations with solvent exchange methods for synthesis of colloidal fullerenes. Colloid. Surf. A 514, 21 (2017). https://doi.org/10.1016/j.colsurfa.2016.11.021
S. Andreev, D. Purgina, E. Bashkatova, A. Garshev, A. Maerle, I. Andreev, N. Osipova, N. Shershakova, M. Khaitov. Study of fullerene aqueous dispersion prepared by novel dialysis method: Simple way to fullerene aqueous solution. Fulleren. Nanotub. Carbon Nanostruct. 23, 792 (2015). https://doi.org/10.1080/1536383X.2014.998758
R. Klimova, S. Andreev, E. Momotyuk, N. Demidova, N. Fedorova, Y. Chernoryzh, K. Yurlov, E. Turetskiy, E. Baraboshkina, N. Shershakova, R. Simonov, A. Kushch, M. Khaitov, A. Gintsburg. Aqueous fullerene C60 solution suppresses herpes simplex virus and cytomegalovirus infections. Fulleren. Nanotub. Carbon Nanostruct. 28, 487 (2020). https://doi.org/10.1080/1536383X.2019.1706495
N. Shershakova, E. Baraboshkina, S. Andreev, D. Purgina, I. Struchkova, O. Kamyshnikov, A. Nikonova, M. Khaitov. Anti-inflammatory effect of fullerene C60 in a mice model of atopic dermatitis. J. Nanobiotechnol. 14, 8 (2016). https://doi.org/10.1186/s12951-016-0159-z
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.