Changes in Optical Properties of Azopolymers in an Electric Field

Authors

  • V. Smokal Taras Shevchenko National University of Kyiv
  • O. Kharchenko Taras Shevchenko National University of Kyiv
  • O. Krupka Taras Shevchenko National University of Kyiv
  • S. Studzinsky Taras Shevchenko National University of Kyiv
  • N. Davidenko Taras Shevchenko National University of Kyiv
  • V. Figà Euro-Mediterranean Institute of Science and Technology (IEMEST)

DOI:

https://doi.org/10.15407/ujpe65.8.686

Keywords:

polymers, aryl(meth)acrylates, electrooptical effect, azobenzene dyes, optical properties

Abstract

We report the preliminary results obtained for polymers incorporating the azobenzene side-group as an optically active molecule. The reversible change of the thin film absorption is observed when illuminating it with monochromatic linearly polarized light under the applied external DC field. The magnotude of a change depends on the angle between the light polarization and the DC electric field direction.

References

D. Eaton. Nonlinear optical materials. Science 253, 281 (1991). https://doi.org/10.1126/science.253.5017.281

D.M. Burland, R.D. Miller, C.A.Walsh. Second-order non-linearity in poled-polymer systems. Chem. Rev. 94, 31 (1994). https://doi.org/10.1021/cr00025a002

V. Fig'a, H. Usta, R. Macaluso, U. Salzner, M. Ozdemir, B. Kulyk, O. Krupka, M. Bruno. Electrochemical polymerization of ambipolar carbonyl-functionalized indenofluorene with memristive properties. Optical Materials 94, 187 (2019). https://doi.org/10.1016/j.optmat.2019.05.017

V. Fig'a, J. Luc, M. Baitoul, B. Sahraoui. NLO properties of polythiophenes galvanostatically electrodeposited on ITO glasses. J. Optoelectron. Adv. Mater. 10, 2123 (2008).

B. Derkowska-Zielinska, K. Matczyszyn, M. Dudek, M. Samoc, R. Czaplicki, A. Kaczmarek-Kedziera, V. Smokal, A. Biitseva, O. Krupka. All-optical poling and two-photon absorption in heterocyclic Azo dyes with different side groups. J. Phys. Chem. C 123,725 (2019). https://doi.org/10.1021/acs.jpcc.8b10621

V. Smokal, A. Krupka, O. Kharchenko, O. Krupka, B. Derkowska-Zielinska, A. Kolendo. Synthesis and photophysical properties of new styrylquinoline-containing polymers. Molec. Cryst. Liq. Cryst. 661, 38 (2018). https://doi.org/10.1080/15421406.2018.1460236

B. Derkowska-Zielinska, L. Skowronski, T. Kozlowski, V. Smokal, A. Kysil, A. Biitseva, O. Krupka. Influence of peripheral substituents on the optical properties of heterocyclic azo dyes. Optical Materials 49, 325 (2015). https://doi.org/10.1016/j.optmat.2015.10.001

B. Derkowska-Zielinska, O. Krupka, V. Smokal, A. Grabowski, M. Naparty, L. Skowronski. Optical properties of disperse dyes doped poly(methyl methacrylate). Molec. Cryst. Liq. Cryst. 639, 87 (2016). https://doi.org/10.1080/15421406.2016.1254585

K. Fedus, V. Smokal, O. Krupka, G. Boudebs. Synthesis and non-resonant nonlinear optical properties of push-pull side-chain azobenzene polymers. J. Nonlin. Opt. Phys. Mater. 20, 1 (2011). https://doi.org/10.1142/S021886351100584X

Z. Sekkat, W. Knoll. Photoreactive Organic Thin Films (Academic Press, 2002) [ISBN: 9780126354904].

J.F. Rabek. Photochemistry and Photophysics (CRC Press, 1989) [ISBN: 9780849340420].

D.S. Correa, M.R. Cardoso, V.C. Gon¸calves, D.T. Balogh, L. De Boni, C.R. Mendon¸ca. Optical birefringence induced by two-photon absorption in polythiophene bearing an azochromophore. Polymer 49, 1562 (2008). https://doi.org/10.1016/j.polymer.2008.01.054

C. Fiorini, J.M. Nunzi, F. Charra, M. Lequan, R.M. Lequan, K. Chane-Ching. Light-induced orientation of a low absorbing phosphine oxide azo-dye/PMMA copolymer: Towards a trade-off between transperancy and photoinduced non-linearity. Chem. Phys. Lett. 271 (4-6), 335 (1997). https://doi.org/10.1016/S0009-2614(97)00463-6

I. Rau, R. Czaplicki, B. Derkowska, J.G. Grote, F. Kajzar, O. Krupka, B. Sahraoui. Nonlinear optical properties of functionalized DNA-CTMA complexes. Nonlinear Optics Quantum Optics 42 (3), 283 (2011).

D. Gindre, A. Boeglin, A. Fort, L. Mager, K. D. Dorkenoo. Rewritable optical data storage in azobenzene copolymers. Opt. Express 14, 9896 (2006). https://doi.org/10.1364/OE.14.009896

B. Kulyk, D. Guichaoua, A. Ayadi, A. El-Ghayoury, B. Sahraoui, Functionalized azo-based iminopyridine rhenium complexes for nonlinear optical performance. Dyes and Pigments 145, 256 (2017). https://doi.org/10.1016/j.dyepig.2017.06.012

H. El Ouazzani, K., Iliopoulos, M. Pranaitis, O. Krupka, V. Smokal, A. Kolendo, B. Sahraoui. Second- and third-order nonlinearities of novel push-pull azobenzene polymers. J. Phys. Chem. B 115 (9), 1944 (2011). https://doi.org/10.1021/jp109936t

N. Davidenko, V. Pavlov, N. Chuprina, I. Davidenko, L. Baath. Thermal influence on passing of polarized light through the SnO2 : In2O3SnO2 : In2O3 layers. J. Appl. Phys. 100, 023111 (2006). https://doi.org/10.1063/1.2210591

M.S. Ho, A. Natansohn, P. Rochon. Azo polymers for reversible optical storage. 7. The effect of the size of the photochromic groups. Macromolecules 28, 6124 (1995). https://doi.org/10.1021/ma00122a020

Downloads

Published

2020-07-30

How to Cite

Smokal, V., Kharchenko, O., Krupka, O., Studzinsky, S., Davidenko, N., & Figà, V. (2020). Changes in Optical Properties of Azopolymers in an Electric Field. Ukrainian Journal of Physics, 65(8), 686. https://doi.org/10.15407/ujpe65.8.686

Issue

Section

Liquid crystals and polymers