Small-Angle Neutron Scattering Study of Bicelles and Proteobicelles with Incorporated Mitochondrial Cytochrome c Oxidase

Authors

  • K. Siposova Institute of Experimental Physics, Slovak Academy of Sciences
  • V. I. Petrenko BCMaterials, Basque Centre for Materials, Applications and Nanostructures, IKERBASQUE, Basque Foundation for Science
  • O. I. Ivankov Joint Institute for Nuclear Research, Institute for Safety Problems of Nuclear Power Plants, Nat. Acad. of Sci. of Ukraine
  • L. A. Bulavin Taras Shevchenko National University of Kyiv
  • A. Musatov Institute of Experimental Physics, Slovak Academy of Sciences

DOI:

https://doi.org/10.15407/ujpe65.8.662

Keywords:

small-angle neutron scattering, bicelles, cytochrome c oxidase, aggregation state

Abstract

The structural investigations of a model membrane system, bicelles, and the aggregation state of isolated and purified bovine heart cytochrome c oxidase (CcO) in bicelles have been performed using small-angle neutron scattering (SANS), SANS contrast variation, and complemented by various biophysical and biochemical techniques. The average size of bicelles prepared from long-chain 1,2-dimyristoyl-sn-glycero-3-phosphocholine and short-chain 1,2-dihexanoyl-sn-glycero-3-phosphocholine was found to be about 22 nm with a thickness of about 4 nm. Enzyme in bicelles was remained active and structurally unaltered. The estimated volume of protein in bicelles of 240 nmcorresponded well to the monomeric form of CcO. The ab initio modeling supports the experimental data and suggests that CcO in bicelles is a homogeneous monomeric complex incorporated into bicelles.

References

B. Kadenbach, J. Jaraush, R. Hartmann, P. Merle. Separation of mammalian cytochrome c oxidase into 13 polypeptides by a sodium dodecyl sulfate-gel electrophoretic procedure. Anal. Biochem. 129, 517 (1983). https://doi.org/10.1016/0003-2697(83)90586-9

M.K.F. Wikstrom. Proton pump coupled to cytochrome c oxidase in mitochondria. Nature 266, 271 (1977). https://doi.org/10.1038/266271a0

T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, and S. Yoshikawa. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 ˚ A. Science 272, 1136 (1996). https://doi.org/10.1126/science.272.5265.1136

A. Musatov, J. Ortega-Lopez, N.C. Robinson. Detergent-solubilized bovine cytochrome c oxidase: Dimerization depends on the amphiphilic environment. Biochemistry 39, 12996 (2000). https://doi.org/10.1021/bi000884z

A. Musatov, N.C. Robinson. Cholate induces dimerization of detergent or phospholipid solubilized cytochrome c oxidase. Biochemistry 41, 4371 (2002). https://doi.org/10.1021/bi016080g

A. Musatov, N.C. Robinson. Bound Cardiolipin is essential for cytochrome c oxidase proton translocation. Biochimie 105, 159 (2014). https://doi.org/10.1016/j.biochi.2014.07.005

A. Musatov, K. Siposova, M. Kubovcikova, V. Lysakova, R. Varhac. Functional and structural evaluation of bovine heart cytochrome c oxidase incorporated into bicelles. Biochimie 121, 21 (2016). https://doi.org/10.1016/j.biochi.2015.11.018

L. Melnikova, V.I. Petrenko, M.V. Garamus, L. Almasy, O.I. Ivankov, L.A. Bulavin, Z. Mitroova, P. Kopcansky. Effect of iron oxide loading on magnetoferritin structure in solution as revealed by SAXS and SANS. Colloids Surf. B 123 82 (2014). https://doi.org/10.1016/j.colsurfb.2014.08.032

V.I. Petrenko, M.V. Avdeev, V.M. Garamus, L.A. Bulavin, P. Kopcansky. Impact of polyethylene glycol on aqueous micellar solutions of sodium oleate studied by small-angle neutron scattering. Colloid. Surf. A Physicochem. Eng. Asp. 480, 191 (2015). https://doi.org/10.1016/j.colsurfa.2014.11.064

L. Melnikova, V. I. Petrenko, M. V. Avdeev, O. I. Ivankov, L.A. Bulavin, V.M. Garamus, L. Almasy, Z. Mitroova, P. Kopcansky. SANS contrast variation study of magneto-ferritin structure at various iron loading.J. Magn. Magn. Mater 377, 77 (2015). https://doi.org/10.1016/j.jmmm.2014.10.085

M.V. Avdeev, V.L. Aksenov, Z. Gazova, L. Almasy, V.I. Petrenko, H. Gojzewski, A.V. Feoktystov, K. Siposova, A. Antosova, M. Timko, P. Kopcansky. On the determination of the helical structure parameters of amyloid protofilaments by small-angle neutron scattering and atomic force microscopy. J. Appl. Crystallogr. 46 (1), 224 (2013). https://doi.org/10.1107/S0021889812050042

L.R. Fowler, S.H. Richardson, Y. Hatefi. A rapid method for the preparation of highly purified cytochrome oxidase. Biochim. Biophys. Acta 64, 170 (1962). https://doi.org/10.1016/0006-3002(62)90770-9

S.N. Mahapatro, N.C. Robinson. Effect of changing the detergent bound to bovine cytochrome c oxidase upon its individual electron-transfer steps. Biochemistry 29, 764 (1990). https://doi.org/10.1021/bi00455a025

P. Kesa, M. Bhide, V. Lysakova, A. Musatov. Subunit analysis of mitochondrial cytochrome c oxidase and cytochrome bc(1) by reversed-phase high-performance liquid chromatography. Anal. Biochem. 516, 6 (2017). https://doi.org/10.1016/j.ab.2016.10.006

A.I. Kuklin, A. V Rogachev, D. V Soloviov, O.I. Ivankov, Y.S. Kovalev, P.K. Utrobin, S.A. Kutuzov, A.G. Soloviev, M.I. Rulev, V.I. Gordeliy. Neutronographic investigations of supramolecular structures on upgraded small-angle spectrometer YuMO. J. Phys. Conf. Ser., IOP Publ. 848 012010 (2017). https://doi.org/10.1088/1742-6596/848/1/012010

A.G. Soloviev, T.M. Solovjeva, O.I. Ivankov, D.V. Soloviov, A.V. Rogachev, A.I. Kuklin. SAS program for two-detector system: Seamless curve from both detectors. J. Phys. Conf. Ser. 848, 012020 (2017). https://doi.org/10.1088/1742-6596/848/1/012020

E.A. Kyzyma, A.A. Tomchuk, L.A. Bulavin, V.I. Petrenko, L. Almasy, M.V. Korobov, D.S. Volkov, I.V. Mikheev, I.V. Koshlan, N.A. Koshlan, P. Bl'aha, M.V. Avdeev, V.L. Aksenov. Structure and toxicity of aqueous fullerene C60 solutions. J. Surf. Invest.: X-Ray 9 (1), 1 (2015). https://doi.org/10.1134/S1027451015010127

L.A. Bulavin, V.M. Garamus, T.V. Karmazina, E.N. Pivnenko. Measurements of structural and electrostatic parameters and surface tension of micelles of an ionic surfactant versus concentration, ionic strength of solution and temperature by small-angle neutron scattering. Colloid. Surf. A Physicochem. Eng. Asp. 131 (1-3) 137 (1998). https://doi.org/10.1016/S0927-7757(96)03882-4

M. Doucet, M. Cho, J. Hie, A. Gervaise, J. Bakker, W. Bouwman, P. Butler, K. Campbell, M. Gonzales, R. Heenan, A. Jackson, P. Juhas, S. King, P. Kienzle,

J. Krzywon, A. Markvardsen, T. Nielsen, L. O'Driscoll, W. Potrzebowski, L.R. Ferraz, T. Richter, P. Rozycko, T. Snow, A. Washington. SasView Version 4.2, Zenodo, 10.5281/zenodo.1412041.

K.A. Rubinson, C. Pokalsky, S. Krueger, L.J. Prochaska. Structure determination of functional membrane proteins using small-angle neutron scattering (SANS) with small, mixed-lipid liposomes: native beef heart mitochondrial cytochrome c oxidase forms dimers. Protein J. 1, 27 (2013). https://doi.org/10.1007/s10930-012-9455-0

D.I. Svergun. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Cryst. 25, 495 (1992). https://doi.org/10.1107/S0021889892001663

D. Franke, D.I. Svergun. DAMMIF, a program for rapid ab initio shape determination in small-angle scattering. J. Appl. Cryst. 42, 342 (2009). https://doi.org/10.1107/S0021889809000338

Downloads

Published

2020-07-30

How to Cite

Siposova, K., Petrenko, V. I., Ivankov, O. I., Bulavin, L. A., & Musatov, A. (2020). Small-Angle Neutron Scattering Study of Bicelles and Proteobicelles with Incorporated Mitochondrial Cytochrome c Oxidase. Ukrainian Journal of Physics, 65(8), 662. https://doi.org/10.15407/ujpe65.8.662

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 > >>