Polymer Composites with Improved Dielectric Properties: A Review
DOI:
https://doi.org/10.15407/ujpe66.2.166Keywords:
polymer composites, dielectric constant, dielectric strength, ceramic filler, energy storageAbstract
Materials exhibiting high dielectric constant (k) values find applications in capacitors, gate dielectrics, dielectric elastomers, energy storage device, while materials with low dielectric constant are required in electronic packaging and other such applications. Traditionally, high k value materials are associated with high dielectric losses, frequency-dependent dielectric behavior, and high loading of a filler. Materials with low k possess a low thermal conductivity. This creates the new challenges in the development of dielectric materials in both kinds of applications. Use of high dielectric constant filler materials increases the dielectric constant. In this study,the factors affecting the dielectric constant and the dielectric strength of polymer composites are explored. The present work aims to study the effect of various parameters affecting the dielectric properties of the materials. The factors selected in this study are the type of a polymer, type of a filler material used, size, shape, loading level and surface modification of a filler material, and method of preparation of the polymer composites. The study is focused on the dielectric enhancement of polymer nanocomposites used in the field of energy storage devices. The results show that the core-shell structured approach for high dielectric constant materials incorporated in a polymer matrix improves the dielectric constant of the polymer composite.
References
M. Arbatti, X. Shan, Z. Cheng. Ceramic-polymer composites with high dielectric constant. Adv Mater. 19 (10), 1369 (2007).
https://doi.org/10.1002/adma.200601996
R. Popielarz, C.K. Chiang, R. Nozaki, J. Obrzut. Dielectric properties of polymer/ferroelectric ceramic composites from 100 Hz to 10 GHz. Macromolecules 34 (17), 5910 (2001).
https://doi.org/10.1021/ma001576b
S.M. Billah. Dielectric polymers, in Functional Polymers. Polymers and Polymeric Composites: A Reference Series. Edited by M. Jafar Mazumder, H. Sheardown, A. Al-Ahmed (Springer, Cham. 2018) [ISBN: 978-3-319-92067-2].
X. Huang, P. Jiang, T. Tanaka. A review of dielectric polymer composites with high thermal conductivity. IEEE Electrical Insulation Magazine 27 (4), 8 (2011).
https://doi.org/10.1109/MEI.2011.5954064
M.T. Sebastian, H. Jantunen. Polymer-ceramic composites of 0-3 connectivity for circuits in electronics: A review. Int. J. Appl. Ceram. Technol. 7 (4), 415 (2010).
https://doi.org/10.1111/j.1744-7402.2009.02482.x
J.Y. Li, L. Zhang, S. Ducharme. Electric energy density of dielectric nanocomposites. Appl. Phys. Lett. 90 (13), 132901 (2007).
https://doi.org/10.1063/1.2716847
F. Liu, Q. Li, J. Cui, Z. Li, G. Yang, Y. Liu, L. Dong, C. Xiong, H. Wang, H.Q. Wang. High-energy-density dielectric polymer nanocomposites with trilayered architecture, Adv. Funct. Mater. 27 (20), 1606292 (2017).
https://doi.org/10.1002/adfm.201606292
B. Chu. A dielectric polymer with high electric energy density and fast discharge speed. Science 313 (5785), 334 (2006).
https://doi.org/10.1126/science.1127798
R. Ratheesh, M.T. Sebastian. Polymer ceramic composites for microwave applications. In: Microwave Materials and Applications. Edited by M.T. Sebastian, H. Jantunen, R. Ubic (Wiley Online Library, 2017), Vol. 2, Chap. 11, p. 481 [ISBN: 9781119208549].
https://doi.org/10.1002/9781119208549.ch11
M.T. Sebastian, L.K. Namitha. Rubber-ceramic composites. In: Microwave Materials and Applications (Wiley Online Library, 2017), Vol. 2, Chap. 12, p. 537 [ISBN: 9781119208549].
https://doi.org/10.1002/9781119208549.ch12
M. Xiao, B.X. Du. Review of high thermal conductivity polymer dielectrics for electrical insulation. High Volt. 1 (1), 34 (2016).
https://doi.org/10.1049/hve.2016.0008
P. Kim, N.M. Doss, J.P. Tillotson, P.J. Hotchkiss, M.J. Pan, S.R. Marder, J. Li, J.P. Calame, J.W. Perry. High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer. ACS Nano 3 (9), 2581 (2009).
https://doi.org/10.1021/nn9006412
Q. Li, K. Han, M.R. Gadinski, G. Zhang, Q. Wang. Energy storage: High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv. Mater. 26 (36), 6244 (2014).
https://doi.org/10.1002/adma.201402106
W. Xia, Z. Xu, F. Wen, Z. Zhang. Electrical energy density and dielectric properties of poly(vinylidene fluoride-chlorotrifluoroethylene)/BaSrTiO3 nanocomposites. Ceram. Int. 38 (2), 1071 (2012).
https://doi.org/10.1016/j.ceramint.2011.08.033
P. Hu, Y. Shen, Y. Guan, X. Zhang, Y. Lin, Q. Zhang, C.W. Nan. Topological-structure modulated polymer nanocomposites exhibiting highly enhanced dielectric strength and energy density. Adv Funct Mater. 24 (21), 3172 (2014).
https://doi.org/10.1002/adfm.201303684
N. Guo, S.A. DiBenedetto, P. Tewari, M.T. Lanagan, M.A. Ratner, T.J. Marks. Nanoparticle, size, shape, and interfacial effects on leakage current density, permittivity, and breakdown strength of metal oxide-polyolefin nanocomposites: Experiment and theory. Chem. Mater. 22 (4), 1567 (2010).
https://doi.org/10.1021/cm902852h
S. Gupta, I. Offenbach, J.A. Ronzello, Y. Cao, S. Boggs, R.A. Weiss, M. Cakmak. Evaluation of poly(4-methyl-1-pentene) as a dielectric capacitor film for high-temperature energy storage applications. J Polym. Sci. Part B Polym. Phys. 55 (20), 1497 (2017).
https://doi.org/10.1002/polb.24399
A. Rizvi, S.S. Bae, N.M.A. Mohamed, J.H. Lee, C.B. Park. Extensional Flow Resistance of 3D Fiber Networks in Plasticized Nanocomposites. Macromolecules 52 (17), 6467 (2019).
https://doi.org/10.1021/acs.macromol.9b00885
K.S. Deepa, N.S. Kumari, P. Parameswaran, M.T. Sebastian, J. James. Effect of conductivity of filler on the percolation threshold of composites. Appl. Phys. Lett. 94 (14), 142902 (2009).
https://doi.org/10.1063/1.3115031
Y. Deng, N. Li, Y. Wang, Z. Zhang, Y. Dang, J. Liang. Enhanced dielectric properties of low density polyethylene with bismuth sulfide used as inorganic filler. Mater Lett. 64 (4), 528 (2010).
https://doi.org/10.1016/j.matlet.2009.11.066
F. He, S. Lau, H.L. Chan, J. Fan. High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Adv. Mater. 21 (6), 710 (2009).
https://doi.org/10.1002/adma.200801758
J.K. Yuan, W.L. Li, S.H. Yao, Y.Q. Lin, A. Sylvestre, J. Bai. High dielectric permittivity and low percolation threshold in polymer composites based on SiC-carbon nanotubes micro/nano hybrid. Appl. Phys. Lett. 98 (3), 032901 (2011).
https://doi.org/10.1063/1.3544942
T.S. Sasikala, M.T. Sebastian. Mechanical, thermal and microwave dielectric properties of Mg2SiO4 filled polyteterafluoroethylene composites. Ceram. Int. 42 (6), 7551 (2016).
https://doi.org/10.1016/j.ceramint.2016.01.162
H. Liu, L. Zhang, D. Yang, N. Ning, Y. Yu, L. Yao, B. Yan, M. Tian. A new kind of electro-active polymer composite composed of silicone elastomer and polyethylene glycol. J. Phys. D Appl. Phys. 45 (48), 485303 (2012).
https://doi.org/10.1088/0022-3727/45/48/485303
M. Panda, V. Srinivas, A.K. Thakur. Role of polymer matrix in large enhancement of dielectric constant in polymer-metal composites. Appl. Phys. Lett. 99 (4), 042905 (2011).
https://doi.org/10.1063/1.3600345
J. Varghese, N. Joseph, H. Jantunen, S.K. Behera, H.T. Kim, M.T. Sebastian. Microwave materials for defense and aerospace applications. In: Handbook of Advanced Ceramics and Composites. Edited by Y. Mahajan, J. Roy (Springer, 2019) [ISBN: 978-3-319-73255-8].
https://doi.org/10.1007/978-3-319-73255-8_9-1
Y. Thakur, T. Zhang, C. Iacob, T. Yang, J. Bernholc, L.Q. Chen, J. Runt, Q.M. Zhang. Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers. Nanoscale 9 (31), 10992 (2017).
https://doi.org/10.1039/C7NR01932G
S. Gross, D. Camozzo, V. Di Noto, L. Armelao, E. Tondello. PMMA: A key macromolecular component for dielectric low-k hybrid inorganic-organic polymer films. Eur. Polym. J. 43 (3), 673 (2007).
https://doi.org/10.1016/j.eurpolymj.2006.12.012
W. Zhou. Thermal and dielectric properties of the aluminium particle reinforced linear low-density polyethylene composites. Polym. Eng. Sci. 51 (5), 917 (2011).
https://doi.org/10.1002/pen.21913
N. Madusanka, S.G. Shivareddy, P. Hiralal, M.D. Eddleston, Y. Choi, R.A. Oliver, G.A. Amaratunga. Nanocomposites of TiO2/cyanoethylated cellulose with ultra high dielectric constants. Nanotechnology 27 (19), 195402 (2016).
https://doi.org/10.1088/0957-4484/27/19/195402
M.P. Chun. Effect of particle size of BNT filler on dielectric and mechanical properties of LCP based composite. In: Applied Mechanics and Materials. Edited byMohd Zulkifly Abdullah (Trans Tech Public., 2013), Vol. 483, p. 138.
https://doi.org/10.4028/www.scientific.net/AMM.483.138
K. Yang, X. Huang, L. Xie, C. Wu, P. Jiang, T. Tanaka. Core-shell structured polystyrene/BaTiO3 hybrid nanodielectrics prepared by in situ RAFT polymerization: A route to high dielectric constant and low loss materials
with weak frequency dependence, Macromol Rapid Commun. 33 (22), 1921 (2012).
https://doi.org/10.1002/marc.201200361
K.S. Deepa, M.T. Sebastian, J. James. Effect of interparticle distance and interfacial area on the properties of insulator-conductor composites. Appl. Phys. Lett. 91 (20), 202904 (2007).
https://doi.org/10.1063/1.2807271
Y. Li, X. Huang, Z. Hu, P. Jiang, S. Li, T. Tanaka. Large dielectric constant and high thermal conductivity in poly(vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites. ACS Appl. Mater. Interfaces. 3 (11), 4396 (2011).
https://doi.org/10.1021/am2010459
J. Yao, L. Hu, M. Zhou, F. You, X. Jiang, L. Gao, Q.Wang, Z. Sun, J. Wang. Synergistic enhancement of thermal conductivity and dielectric properties in Al2O3/BaTiO3/PP composites. Materials 11 (9), 1536 (2018).
https://doi.org/10.3390/ma11091536
X. Zhang, Y. Shen, B. Xu, Q. Zhang, L. Gu, J. Jiang, J. Ma, Y. Lin, C.W. Nan. Giant energy density and improved discharge efficiency of solution-processed polymer nanocomposites for dielectric energy storage. Adv. Mater. 28 (10), 2055 (2016).
https://doi.org/10.1002/adma.201503881
M. Roy, J.K. Nelson, R.K. MacCrone, L.S. Schadler, C.W. Reed, R. Keefe. Polymer nanocomposite dielectrics - the role of the interface. In: IEEE Transactions on Dielectrics and Electrical Insulation (IEEE, 2005), 12 (4), p. 629.
https://doi.org/10.1109/TDEI.2005.1511089
N. Guo, S.A. DiBenedetto, D.K. Kwon, L. Wang, M.T. Russell, M.T. Lanagan, A. Facchetti, T.J. Marks. Supported metallocene catalysis for in situ synthesis of high energy density metal oxide nanocomposites, J. Am. Chem. Soc. 129 (4), 766 (2007).
https://doi.org/10.1021/ja066965l
S. Sugumaran, C.S. Bellan. Transparent nano composite PVA-TiO2 and PMMA-TiO2 thin films: Optical and delectric properties. Optik 125 (18), 5128 (2014).
https://doi.org/10.1016/j.ijleo.2014.04.077
Z. Wang, J.K. Nelson, H. Hillborg, S. Zhao, L.S. Schadler. Graphene oxide filled nanocomposite with novel electrical and dielectric properties. Adv Mater. 24 (23), 3134 (2012).
https://doi.org/10.1002/adma.201200827
D. Ramesh. One-step fabrication of biomimetic PVDF-BaTiO3 nanofibrous composite using DoE. Mater. Res. Express. 5 (8), 085308 (2018).
https://doi.org/10.1088/2053-1591/aad156
A. Trajkovska. Inorganic dopants in polymer cholesteric liquid crystals. Maced. J. Chem. Chem. Eng. 34 (2), 381 (2015).
https://doi.org/10.20450/mjcce.2015.629
M. Crippa, A. Bianchi, D. Cristofori, M. D'Arienzo, F. Merletti, F. Morazzoni, R. Scotti, R. Simonutti. High dielectric constant rutile-polystyrene composite with enhanced percolative threshold. J. Mater. Chem. C 1 (3), 484 (2013).
https://doi.org/10.1039/C2TC00042C
X. Zhang, Y. Shen, Q. Zhang, L. Gu, Y. Hu, J. Du, Y. Lin, C.W. Nan. Ultrahigh energy density of polymer nanocomposites containing BaTiO3-TiO2 nanofibers by atomic-scale interface engineering. Adv. Mater. 27 (5), 819 (2015).
https://doi.org/10.1002/adma.201404101
Y. Shen, Y. Lin, Q.M. Zhang. Polymer nanocomposites with high energy storage densities. MRS. Bull. 40 (9), 753 (2015).
https://doi.org/10.1557/mrs.2015.199
B.K. Sharma, A.K. Gupta, N. Khare, S.K. Dhawan, H.C. Gupta. Synthesis and characterization of polyaniline-ZnO composite and its dielectric behavior. Synth. Met. 159 (5-6), 391 (2009).
https://doi.org/10.1016/j.synthmet.2008.10.010
Z. Chen, J. Pei, R. Li. Study of the preparation and dielectric property of PP/SMA/PVDF blend material, Appl. Sci. 7 (4), 389 (2017).
https://doi.org/10.3390/app7040389
C. Yang, H. Li, D. Xiong, Z. Cao. Hollow polyaniline/Fe3O4 microsphere composites: Preparation, characterization, and applications in microwave absorption. React. Funct. Polym. 69 (2), 137 (2009).
https://doi.org/10.1016/j.reactfunctpolym.2008.12.008
J. Gu, X. Meng, Y. Tang, Y. Li, Q. Zhuang, J. Kong. Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities. Compos. Part A Appl. Sci. Manuf. 92, 27 (2017).
https://doi.org/10.1016/j.compositesa.2016.11.002
W. Zhou, C. Wang, T. Ai, K. Wu, F. Zhao, H. Gu. A novel fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity. Compos. Part A Appl. Sci. Manuf. 40 (6-7), 830 (2009).
https://doi.org/10.1016/j.compositesa.2009.04.005
W. Zhou, J. Zuo, W. Ren. Thermal conductivity and dielectric properties of Al/PVDF composites. Compos. Part A Appl. Sci. Manuf. 43 (4), 658 (2012).
https://doi.org/10.1016/j.compositesa.2011.11.024
W. Wu, X. Huang, S. Li, P. Jiang, T. Toshikatsu. Novel three-dimensional zinc oxide superstructures for high dielectric constant polymer composites capable of withstanding high electric field. J. Phys. Chem. C. 116 (47), 24887 (2012).
https://doi.org/10.1021/jp3088644
C. Yang, Y. Lin, C.W. Nan. Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density. Carbon 47 (4), 1096 (2009).
https://doi.org/10.1016/j.carbon.2008.12.037
S.A. Paniagua, Y. Kim, K. Henry, R. Kumar, J.W. Perry, S.R. Marder. Surface-initiated polymerization from barium titanate nanoparticles for hybrid dielectric capacitors. ACS Appl. Mater. Interfaces 6 (5), 3477 (2014).
https://doi.org/10.1021/am4056276
K.S. Shah, R.C. Jain, V. Shrinet, A.K. Singh, D.P. Bharambe. High density polyethylene (HDPE) clay nanocomposite for dielectric applications. In: IEEE Transaction on Dielectrics and Electrical Insulation (IEEE, 2009), 16 (3), p. 853.
https://doi.org/10.1109/TDEI.2009.5128526
N. Madusanka, S.G. Shivareddy, M.D. Eddleston, P. Hiralal, R.A. Oliver, G.A.J. Amaratunga. Dielectric behavior of
montmorillonite/cyanoethylated cellulose nanocomposites. Carbohydr. Polym. 172, 315 (2017).
https://doi.org/10.1016/j.carbpol.2017.05.057
Q. Li, L. Chen, M.R. Gadinski, S. Zhang, G. Zhang, H.U. Li, E. Iagodkine, A. Haque, L.Q. Chen, T.N. Jackson, Q. Wang. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523 (7562), 576 (2015).
https://doi.org/10.1038/nature14647
X. Huang, P. Jiang. Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv. Mater. 27 (3), 546 (2015).
https://doi.org/10.1002/adma.201401310
D. He, Y. Wang, X. Chen, Y. Deng. Core-shell structured BaTiO3-Al2O3 nanoparticles in polymer composites for dielectric loss suppression and breakdown strength enhancement, Compos. Part A Appl. Sci. Manuf. 93, 137 (2017).
https://doi.org/10.1016/j.compositesa.2016.11.025
M.N. Tchoul, S.P. Fillery, H. Koerner, L.F. Drummy, F.T. Oyerokun, P.A. Mirau, M.F. Durstock, R.A. Vaia. Assemblies of titanium dioxide-polystyrene hybrid nanoparticles for dielectric applications. Chem. Mater. 22 (5), 1749 (2010).
https://doi.org/10.1021/cm903182n
T.I. Yang, C.Y. Chuang, S.C. Yang, L.C. Kempel, P. Kofinas. Core/shell iron/oxide nanoparticles for improving the magneto-dielectric properties of polymer composites. Adv. Eng. Mater. 18 (1), 121 (2016).
https://doi.org/10.1002/adem.201500234
S. Liu, S. Xue, S. Xiu, B. Shen, J. Zhai. Surface-modified Ba(Zr0.3Ti0.7)O3 nanofibers by polyvinylpyrrolidone filler for poly(vinylidene fluoride) composites with enhanced dielectric constant and energy storage density. Sci. Rep. 6, 26198 (2016).
https://doi.org/10.1038/srep26198
Z. Zhang, Y. Gu, J. Bi, S. Wang, M. Li, Z. Zhang. Tunable BT-SiO2 core@shell filler reinforced polymer composite with high breakdown strength and release energy density. Compos. Part A Appl. Sci. Manuf. 85, 172 (2016).
https://doi.org/10.1016/j.compositesa.2016.03.025
M. Laad. Extraction and characterization of silica from agro-waste for energy applications. In: International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS) (IEEE, 2017), p. 1946.
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.